Atomic scale analysis of conduction events in potassium channels through neural networks

Semplici, Claudia (2024) Atomic scale analysis of conduction events in potassium channels through neural networks. [Laurea magistrale], Università di Bologna, Corso di Studio in Biomedical engineering [LM-DM270] - Cesena, Documento full-text non disponibile
Il full-text non è disponibile per scelta dell'autore. (Contatta l'autore)

Abstract

Ion channels are essential for various physiological processes, as they regulate the movement of ions across cell membranes. In recent years, Molecular Dynamics (MD) and Markov State Models (MSMs) have been used to study these processes at the atomic scales. One important limit of the methods currently used to estimate MSMs from MD trajectories of conduction events is related to the clustering step, which is complicated by the high dimensionality of the dataset. This thesis investigates the application of neural network models, specifically Variational Autoencoders (VAEs) and networks based on the Variational Approach for Markov Processes (VAMPnets), for the atomic-scale analysis of conduction events in potassium ion channels. Results indicate that both VAEs and VAMPnets can identify the macrostates conduction events in simulated data, but VAMPnets provide a superior ability to identify and characterize slower processes. Both models show limitations in replicating exact transition matrices particularly for systems with fast dynamics. This work demonstrates the potential of deep learning techniques to study ion channel dynamics.

Abstract
Tipologia del documento
Tesi di laurea (Laurea magistrale)
Autore della tesi
Semplici, Claudia
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Indirizzo
CURRICULUM INNOVATIVE TECHNOLOGIES IN DIAGNOSTICS AND THERAPY
Ordinamento Cds
DM270
Parole chiave
Ion,Channels,Potassium,Molecular,Dynamics,(MD),Markov,State,Models,(MSMs),Neural,Networks,Variational Autoencoders,(VAEs),Approach,Clustering,Dimensionality, Reduction,VAMPnets
Data di discussione della Tesi
21 Novembre 2024
URI

Altri metadati

Gestione del documento: Visualizza il documento

^