Test Time Training for Binary Anomaly Segmentation

Aiezzo, Agostino (2024) Test Time Training for Binary Anomaly Segmentation. [Laurea magistrale], Università di Bologna, Corso di Studio in Artificial intelligence [LM-DM270], Documento full-text non disponibile
Il full-text non è disponibile per scelta dell'autore. (Contatta l'autore)

Abstract

Deep Learning has recently shown its potential in the Industrial Anomaly Detection and Segmentation context. Nonetheless, there are still problems when it comes to real-world use mainly due to the cold start problem. Also, current methods are particularly good at solving the detection part of anomalies, but not the segmentation one, which is very important in an industrial setting. This is why the main standard technique currently consists in binarizing anomaly score maps. Despite its simplicity, it’s an approach that delivers poor segmentation performance and is subject to too much variability. In this thesis, we propose to apply an innovative approach for training artificial intelligence models at test time, together with a pseudo-labeling mechanism, in order to improve performance on the anomaly segmentation task and mitigate the cold start problem. Our method, named TTT4AS, demonstrates promising results both from a quantitative and qualitative point of view. The finding of this thesis have been published in a CVPR 2024 workshop on anomaly detection.

Abstract
Tipologia del documento
Tesi di laurea (Laurea magistrale)
Autore della tesi
Aiezzo, Agostino
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Ordinamento Cds
DM270
Parole chiave
anomaly detection,anomay segmentation,test time training
Data di discussione della Tesi
23 Luglio 2024
URI

Altri metadati

Gestione del documento: Visualizza il documento

^