Rupnik Boero, Giovanni Battista
(2024)
A transformer and novel triggers for the search for Higgs boson pair production in the bbττ final state with the ATLAS detector.
[Laurea magistrale], Università di Bologna, Corso di Studio in
Physics [LM-DM270], Documento ad accesso riservato.
Documenti full-text disponibili:
|
Documento PDF (Thesis)
Full-text accessibile solo agli utenti istituzionali dell'Ateneo
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato
Download (30MB)
| Contatta l'autore
|
Abstract
The Higgs boson self-interaction is a direct probe of the shape of the Higgs potential, one of the last predictions of the Standard Model awaiting experimental confirmation. A major goal of the ATLAS Experiment for the ongoing Run 3 of the LHC is to investigate the self-interaction via searches for Higgs boson pair production (HH). The HH->bbττ analysis targets one of the most sensitive channels for this search but necessitates refining its strategy for Run 3. Two such refinements are presented in this thesis. In the first study, novel trigger chains are examined to improve the signal efficiency in data-taking, comparing them to baseline triggers used for the Run 2 analysis. The research considers new di-τ triggers with lower transverse momentum thresholds, the jet-only Delayed stream trigger from the HH->4b analysis, and proposed b+τ triggers. Together, the total trigger efficiency can be improved from 55% in Run 2 to up to 85% in Run 3. In the second study, a state-of-the-art machine learning algorithm, a transformer, is employed to separate ggF and VBF HH events. The study achieved a significant enhancement compared to the Run 2 analysis, based on a boosted decision tree. A 15% increase in VBF efficiency for the same ggF contamination, and a 100% increase in ggF rejection (inverted false positive rate) for the same VBF efficiency are found.
Abstract
The Higgs boson self-interaction is a direct probe of the shape of the Higgs potential, one of the last predictions of the Standard Model awaiting experimental confirmation. A major goal of the ATLAS Experiment for the ongoing Run 3 of the LHC is to investigate the self-interaction via searches for Higgs boson pair production (HH). The HH->bbττ analysis targets one of the most sensitive channels for this search but necessitates refining its strategy for Run 3. Two such refinements are presented in this thesis. In the first study, novel trigger chains are examined to improve the signal efficiency in data-taking, comparing them to baseline triggers used for the Run 2 analysis. The research considers new di-τ triggers with lower transverse momentum thresholds, the jet-only Delayed stream trigger from the HH->4b analysis, and proposed b+τ triggers. Together, the total trigger efficiency can be improved from 55% in Run 2 to up to 85% in Run 3. In the second study, a state-of-the-art machine learning algorithm, a transformer, is employed to separate ggF and VBF HH events. The study achieved a significant enhancement compared to the Run 2 analysis, based on a boosted decision tree. A 15% increase in VBF efficiency for the same ggF contamination, and a 100% increase in ggF rejection (inverted false positive rate) for the same VBF efficiency are found.
Tipologia del documento
Tesi di laurea
(Laurea magistrale)
Autore della tesi
Rupnik Boero, Giovanni Battista
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Indirizzo
NUCLEAR AND SUBNUCLEAR PHYSICS
Ordinamento Cds
DM270
Parole chiave
transformer,machine learning,trigger,ATLAS,LHC,Higgs boson
Data di discussione della Tesi
27 Marzo 2024
URI
Altri metadati
Tipologia del documento
Tesi di laurea
(NON SPECIFICATO)
Autore della tesi
Rupnik Boero, Giovanni Battista
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Indirizzo
NUCLEAR AND SUBNUCLEAR PHYSICS
Ordinamento Cds
DM270
Parole chiave
transformer,machine learning,trigger,ATLAS,LHC,Higgs boson
Data di discussione della Tesi
27 Marzo 2024
URI
Statistica sui download
Gestione del documento: