Implementation of a radiomics pipeline for survival analysis in multiple myeloma patients using 18F FDG PET/CT images: unveiling prognostic markers and predictive models

Ceresi, Alessandro (2024) Implementation of a radiomics pipeline for survival analysis in multiple myeloma patients using 18F FDG PET/CT images: unveiling prognostic markers and predictive models. [Laurea magistrale], Università di Bologna, Corso di Studio in Physics [LM-DM270], Documento ad accesso riservato.
Documenti full-text disponibili:
[thumbnail of Thesis] Documento PDF (Thesis)
Full-text non accessibile fino al 27 Marzo 2025.
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato

Download (6MB) | Contatta l'autore

Abstract

Multiple Myeloma (MM) poses a formidable challenge due to its high mortality rate, necessitating standardized diagnostic criteria, personalized treatment strategies, and robust prognostic assessments. While clinical evaluations and tests are essential, Computed Tomography (CT) and Positron Emission Tomography (PET) scans play a crucial role in detecting MM lesions. This thesis introduces a comprehensive radiomics pipeline for CT and PET images of MM patients. The workflow begins with MOOSE-assisted spine segmentation, focusing on the disease-active region. Three segmentation versions are derived: original, including bone marrow, and considering surrounding areas. Feature extraction follows, shaping medical scans according to these segmentations. Survival analysis, using the Cox model, explores Progression-Free Survival (PFS) in MM patients to identify prognostic biomarkers and build predictive models. Findings suggest that the spine may not be optimal for prognostic insights compared to studies involving the entire skeleton. CT images outperform PET with higher concordance index (C-index) scores. Results differ based on segmentation shapes and image filters. The feature selection model reveals consistent emergence of shape features, especially "flatness." Pairing specific shape and texture features shows promise in Cox model predictions. This study yields valuable MM prognosis insights, emphasizing specific image regions, imaging modalities, and feature selection in enhancing predictive modeling for patient outcomes. Advanced radiomic analysis addresses the complexities of MM, aiding clinicians in diagnosis, treatment, and prognosis for this challenging disease.

Abstract
Tipologia del documento
Tesi di laurea (Laurea magistrale)
Autore della tesi
Ceresi, Alessandro
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Indirizzo
Applied Physics
Ordinamento Cds
DM270
Parole chiave
Machine learning,Multiple myeloma,Cox model,feature extraction,PET,CT,Segmentation,MOOSE,Image alignment,radiomics
Data di discussione della Tesi
27 Marzo 2024
URI

Altri metadati

Gestione del documento: Visualizza il documento

^