Pagnotta, Antonio
(2024)
Llama 2 as a Next-Generation Partial Order Programming Tool: Performance Benchmarks and Implications for Autonomous Systems.
[Laurea magistrale], Università di Bologna, Corso di Studio in
Ingegneria informatica [LM-DM270], Documento ad accesso riservato.
Documenti full-text disponibili:
|
Documento PDF (Thesis)
Full-text accessibile solo agli utenti istituzionali dell'Ateneo
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato
Download (862kB)
| Contatta l'autore
|
Abstract
Examining the planning and reasoning abilities of large language models (LLMs) has become a notable area of research due to their crucial role in the functionality of intelligent agents. Consequently, the assessment of planning and reasoning capabilities in LLMs has obtained significant attention in the research field. While most evaluations of LLM planning abilities focus on everyday tasks, distinguishing between genuine planning and knowledge retrieval from their extensive databases poses a challenge. The aim of this study is to determine the extent to which LLMs can autonomously solve planning problems and to understand how LLMs can guide AI planners and whether their planning performance can be enhanced to rival that of dedicated plan-solving algorithms. This study aims to explore the potential of leveraging LLMs as Partial Order Planning tools and investigate the efficacy of fine-tuning techniques in enhancing model performance.
Abstract
Examining the planning and reasoning abilities of large language models (LLMs) has become a notable area of research due to their crucial role in the functionality of intelligent agents. Consequently, the assessment of planning and reasoning capabilities in LLMs has obtained significant attention in the research field. While most evaluations of LLM planning abilities focus on everyday tasks, distinguishing between genuine planning and knowledge retrieval from their extensive databases poses a challenge. The aim of this study is to determine the extent to which LLMs can autonomously solve planning problems and to understand how LLMs can guide AI planners and whether their planning performance can be enhanced to rival that of dedicated plan-solving algorithms. This study aims to explore the potential of leveraging LLMs as Partial Order Planning tools and investigate the efficacy of fine-tuning techniques in enhancing model performance.
Tipologia del documento
Tesi di laurea
(Laurea magistrale)
Autore della tesi
Pagnotta, Antonio
Relatore della tesi
Scuola
Corso di studio
Indirizzo
CURRICULUM INGEGNERIA INFORMATICA
Ordinamento Cds
DM270
Parole chiave
AI,POP,LLM,Intelligent Systems,Tranformers,LLama 2,GPT
Data di discussione della Tesi
19 Marzo 2024
URI
Altri metadati
Tipologia del documento
Tesi di laurea
(NON SPECIFICATO)
Autore della tesi
Pagnotta, Antonio
Relatore della tesi
Scuola
Corso di studio
Indirizzo
CURRICULUM INGEGNERIA INFORMATICA
Ordinamento Cds
DM270
Parole chiave
AI,POP,LLM,Intelligent Systems,Tranformers,LLama 2,GPT
Data di discussione della Tesi
19 Marzo 2024
URI
Statistica sui download
Gestione del documento: