Noviello, Yuri
 
(2024)
Enhancing Chatbot Efficacy in Italian Language through Retrieval Augmented Generation and LoRA Fine-Tuning.
[Laurea magistrale], Università di Bologna, Corso di Studio in 
Artificial intelligence [LM-DM270], Documento ad accesso riservato.
  
 
  
  
        
        
	
  
  
  
  
  
  
  
    
  
    
      Documenti full-text disponibili:
      
        
          
            | ![[thumbnail of Thesis]](https://amslaurea.unibo.it/style/images/fileicons/application_pdf.png) | Documento PDF (Thesis) Full-text accessibile solo agli utenti istituzionali dell'Ateneo
 Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato
 Download (840kB)
              
              
                | Contatta l'autore
 | 
        
      
    
  
  
    
      Abstract
      This thesis delves into the integration of Large Languages Models (LLM)within the implementation of conversational agents. Traditionally, chatbotsystems were built using rule-based or simple machine learning approachesthat heavily relied on predefined scripts and limited user input interpretation.
Addressing these challenges, our research proposes a methodology thatleverages the advanced capabilities of LLMs, enhanced through Retrieval-Augmented Generation (RAG) systems and the Low-Rank Adaptation (LoRA)fine-tuning technique, to significantly improve chatbot performance on theItalian language.
Through meticulous evaluation, including the most recent benchmarks de-signed for assessing LLMs, our research demonstrated the superiority of thefine-tuned model over the original one in handling Italian conversations byleveraging only a minimal subset of model’s parameters.
This research was conducted internally the ML/AI team of Injenia, withinthe European project Masters in AI for Careers in EU (MAI4CAREU).
     
    
      Abstract
      This thesis delves into the integration of Large Languages Models (LLM)within the implementation of conversational agents. Traditionally, chatbotsystems were built using rule-based or simple machine learning approachesthat heavily relied on predefined scripts and limited user input interpretation.
Addressing these challenges, our research proposes a methodology thatleverages the advanced capabilities of LLMs, enhanced through Retrieval-Augmented Generation (RAG) systems and the Low-Rank Adaptation (LoRA)fine-tuning technique, to significantly improve chatbot performance on theItalian language.
Through meticulous evaluation, including the most recent benchmarks de-signed for assessing LLMs, our research demonstrated the superiority of thefine-tuned model over the original one in handling Italian conversations byleveraging only a minimal subset of model’s parameters.
This research was conducted internally the ML/AI team of Injenia, withinthe European project Masters in AI for Careers in EU (MAI4CAREU).
     
  
  
    
    
      Tipologia del documento
      Tesi di laurea
(Laurea magistrale)
      
      
      
      
        
      
        
          Autore della tesi
          Noviello, Yuri
          
        
      
        
          Relatore della tesi
          
          
        
      
        
          Correlatore della tesi
          
          
        
      
        
          Scuola
          
          
        
      
        
          Corso di studio
          
          
        
      
        
      
        
      
        
          Ordinamento Cds
          DM270
          
        
      
        
          Parole chiave
          AI,NLP,RAG,LLM,LLAMA
          
        
      
        
          Data di discussione della Tesi
          19 Marzo 2024
          
        
      
      URI
      
      
     
   
  
    Altri metadati
    
      Tipologia del documento
      Tesi di laurea
(NON SPECIFICATO)
      
      
      
      
        
      
        
          Autore della tesi
          Noviello, Yuri
          
        
      
        
          Relatore della tesi
          
          
        
      
        
          Correlatore della tesi
          
          
        
      
        
          Scuola
          
          
        
      
        
          Corso di studio
          
          
        
      
        
      
        
      
        
          Ordinamento Cds
          DM270
          
        
      
        
          Parole chiave
          AI,NLP,RAG,LLM,LLAMA
          
        
      
        
          Data di discussione della Tesi
          19 Marzo 2024
          
        
      
      URI
      
      
     
   
  
  
  
  
  
    
    Statistica sui download
    
    
  
  
    
      Gestione del documento: 
      
        