Combining Language Models, deep ensemble learning and explanation for automatic ticket classification

Mele, Matteo (2024) Combining Language Models, deep ensemble learning and explanation for automatic ticket classification. [Laurea magistrale], Università di Bologna, Corso di Studio in Informatica [LM-DM270], Documento full-text non disponibile
Il full-text non è disponibile per scelta dell'autore. (Contatta l'autore)

Abstract

In this work, we addressed the Ticket Classification task on the dataset provided by CINECA. Our goal was to provide a tool to reduce the workload on the customer care units, particularly by automating frequent and easily categorized tickets and offering easy-to-interpret analysis tools for more complex requests. After analyzing different approaches proposed in the literature, we developed our framework that managed to bring together interesting and original aspects namely the use of LM-based text representations, the implementation of ensemble models with different strategies of combining base learners, the analysis of the tradeoff between accuracy and confidence of the predictions and model complexity, and, finally, a mechanism of explainability of the results to mitigate the black-box nature of DNN models. Tests on real data confirmed the accuracy of the classifications returned by the framework and the practical value of their associated explanation.

Abstract
Tipologia del documento
Tesi di laurea (Laurea magistrale)
Autore della tesi
Mele, Matteo
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Indirizzo
CURRICULUM A: TECNICHE DEL SOFTWARE
Ordinamento Cds
DM270
Parole chiave
Machine Learning,Deep Learning,Ensemble,Ticket Classification,Ticket Automation,Explainability,Language Model,LM
Data di discussione della Tesi
14 Marzo 2024
URI

Altri metadati

Gestione del documento: Visualizza il documento

^