Pittini, Enrico
(2023)
Multi-view 3d reconstruction using NeRF-based approaches.
[Laurea magistrale], Università di Bologna, Corso di Studio in
Artificial intelligence [LM-DM270], Documento ad accesso riservato.
Documenti full-text disponibili:
|
Documento PDF (Thesis)
Full-text accessibile solo agli utenti istituzionali dell'Ateneo
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato
Download (27MB)
| Contatta l'autore
|
Abstract
The growing demand for realistic and immersive 3d reconstructions has fueled advancements in computer vision and machine learning. This master thesis explores the usage of Neural Radiance Fields (NeRF) to achieve state-of-the-art 3d reconstruction from plain images.
This research consists in an in-depth analysis of existing 3d reconstruction methodologies based on NeRF, highlighting their strengths and limitations. In particular, both the geometry and the texture are taken into account in analyzing the quality of the resulting meshes.
After the analysis of the first results, NeuS and similar NeRF variants are explored in order to improve the smoothness and consistency of the mesh geometry. Finally, modifications of the texturing algorithm and the development of optimization procedures based on differentiable rendering are explored in order to obtain a more detailed and cleaner mesh texture.
In conclusion, this master thesis contributes to the evolving field of 3d reconstruction by presenting a survey of the main NeRF-based methodologies and by showcasing the synergistic capabilities of NeRF, NeuS and other techniques such as differentiable rendering. The proposed methodology advances the state-of-the-art allowing for a more consistent mesh surface and a higher quality mesh texture.
Abstract
The growing demand for realistic and immersive 3d reconstructions has fueled advancements in computer vision and machine learning. This master thesis explores the usage of Neural Radiance Fields (NeRF) to achieve state-of-the-art 3d reconstruction from plain images.
This research consists in an in-depth analysis of existing 3d reconstruction methodologies based on NeRF, highlighting their strengths and limitations. In particular, both the geometry and the texture are taken into account in analyzing the quality of the resulting meshes.
After the analysis of the first results, NeuS and similar NeRF variants are explored in order to improve the smoothness and consistency of the mesh geometry. Finally, modifications of the texturing algorithm and the development of optimization procedures based on differentiable rendering are explored in order to obtain a more detailed and cleaner mesh texture.
In conclusion, this master thesis contributes to the evolving field of 3d reconstruction by presenting a survey of the main NeRF-based methodologies and by showcasing the synergistic capabilities of NeRF, NeuS and other techniques such as differentiable rendering. The proposed methodology advances the state-of-the-art allowing for a more consistent mesh surface and a higher quality mesh texture.
Tipologia del documento
Tesi di laurea
(Laurea magistrale)
Autore della tesi
Pittini, Enrico
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Ordinamento Cds
DM270
Parole chiave
3d reconstruction,computer vision,deep learning,NeRF,NeuS,differentiable rendering,nerfstudio,SDFstudio
Data di discussione della Tesi
16 Dicembre 2023
URI
Altri metadati
Tipologia del documento
Tesi di laurea
(NON SPECIFICATO)
Autore della tesi
Pittini, Enrico
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Ordinamento Cds
DM270
Parole chiave
3d reconstruction,computer vision,deep learning,NeRF,NeuS,differentiable rendering,nerfstudio,SDFstudio
Data di discussione della Tesi
16 Dicembre 2023
URI
Statistica sui download
Gestione del documento: