Data-driven Capacity Estimation of Lithium-Ion Batteries Using Machine Learning Methods

Nafeh, Ramez (2023) Data-driven Capacity Estimation of Lithium-Ion Batteries Using Machine Learning Methods. [Laurea magistrale], Università di Bologna, Corso di Studio in Artificial intelligence [LM-DM270], Documento full-text non disponibile
Il full-text non è disponibile per scelta dell'autore. (Contatta l'autore)

Abstract

On-line battery State of Health prediction is essential for the safe and reliable operation of electrically powered machines and electronics. In this work, we present a Machine Learning (ML) pipeline which uses pre-collected charging data in order predict the battery capacity on-line and without the need for a lengthy intrusive capacity measurement. The model is based on Gradient Boosting, namely XGBoost which is an efficient version of this algorithm. It achieves an average error rate of 1% (Mean Absolute Error) while being very quick in inference, in the order of a few seconds. Moreover, it can be easily expanded to work on other devices and scenarios by applying similar steps with new training data.

Abstract
Tipologia del documento
Tesi di laurea (Laurea magistrale)
Autore della tesi
Nafeh, Ramez
Relatore della tesi
Scuola
Corso di studio
Ordinamento Cds
DM270
Parole chiave
Machine Learning,Li-ion Battery,Regression
Data di discussione della Tesi
16 Dicembre 2023
URI

Altri metadati

Gestione del documento: Visualizza il documento

^