Sajjad, Zainab
(2023)
Prototyping a device to administer a desired medium perfusion flow to 3D cell cultures.
[Laurea magistrale], Università di Bologna, Corso di Studio in
Biomedical engineering [LM-DM270] - Cesena, Documento ad accesso riservato.
Documenti full-text disponibili:
|
Documento PDF (Thesis)
Full-text accessibile solo agli utenti istituzionali dell'Ateneo
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato
Download (1MB)
| Contatta l'autore
|
Abstract
Traditional 2D cell culture, well-regarded for its reproducibility and cost-efficiency, serves a multitude of scientific purposes, spanning physiological investigations, disease-related studies, and pre-clinical drug screening. However, it falls short in replicating the complex 3D microenvironment found in living tissues, with cells growing on flat surfaces like glass or standard plastic, lacking the biomechanical intricacies of biological tissues. To address these limitations, researchers are exploring diverse methodologies and biomaterials for 3D cell culture models, introducing critical factors like cell-cell and cell-extracellular matrix interactions that influence cell survival, proliferation, and migration, closely resembling physiological conditions. Transitioning to 3D culture presents challenges, including uneven nutrient diffusion. Perfusion bioreactor systems are emerging solutions, enhancing nutrient and oxygen transport in the 3D scaffold. This research integrates 3D cell culture with perfusion to gain deeper insights into these complex cellular processes. The endpoints of following studies will include cellular behavior in a perfused 3D culture system, using MC3T3 cells derived from mouse calvaria, assessing viability, distribution, morphology, molecular phenotype, and osteogenic potential.
Abstract
Traditional 2D cell culture, well-regarded for its reproducibility and cost-efficiency, serves a multitude of scientific purposes, spanning physiological investigations, disease-related studies, and pre-clinical drug screening. However, it falls short in replicating the complex 3D microenvironment found in living tissues, with cells growing on flat surfaces like glass or standard plastic, lacking the biomechanical intricacies of biological tissues. To address these limitations, researchers are exploring diverse methodologies and biomaterials for 3D cell culture models, introducing critical factors like cell-cell and cell-extracellular matrix interactions that influence cell survival, proliferation, and migration, closely resembling physiological conditions. Transitioning to 3D culture presents challenges, including uneven nutrient diffusion. Perfusion bioreactor systems are emerging solutions, enhancing nutrient and oxygen transport in the 3D scaffold. This research integrates 3D cell culture with perfusion to gain deeper insights into these complex cellular processes. The endpoints of following studies will include cellular behavior in a perfused 3D culture system, using MC3T3 cells derived from mouse calvaria, assessing viability, distribution, morphology, molecular phenotype, and osteogenic potential.
Tipologia del documento
Tesi di laurea
(Laurea magistrale)
Autore della tesi
Sajjad, Zainab
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Indirizzo
CURRICULUM INNOVATIVE TECHNOLOGIES IN DIAGNOSTICS AND THERAPY
Ordinamento Cds
DM270
Parole chiave
3D scaffold,bioreactor
Data di discussione della Tesi
23 Novembre 2023
URI
Altri metadati
Tipologia del documento
Tesi di laurea
(NON SPECIFICATO)
Autore della tesi
Sajjad, Zainab
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Indirizzo
CURRICULUM INNOVATIVE TECHNOLOGIES IN DIAGNOSTICS AND THERAPY
Ordinamento Cds
DM270
Parole chiave
3D scaffold,bioreactor
Data di discussione della Tesi
23 Novembre 2023
URI
Statistica sui download
Gestione del documento: