Ciapponi, Stefano
 
(2023)
On the use of Prompting for Fine-Tuning Neural models for Speech Processing.
[Laurea magistrale], Università di Bologna, Corso di Studio in 
Artificial intelligence [LM-DM270]
   
  
  
        
        
	
  
  
  
  
  
  
  
    
  
    
      Documenti full-text disponibili:
      
        
          
            ![[thumbnail of Thesis]](https://amslaurea.unibo.it/style/images/fileicons/application_pdf.png)  | 
            
              
Documento PDF (Thesis)
   Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato
 
              Download (1MB)
              
			  
			  
              
  
              
             | 
          
        
      
    
  
  
    
      Abstract
      Recent advances in the development of extremely large, multi-purpose models have motivated computer scientists to explore methods for adapting them to more specific tasks.
Fine-tuning is the most widely used approach to this problem, in which a more general model is trained on a new dataset of labeled data for the new task. While fine-tuning mitigates the data availability problem and enables models trained on small labeled datasets to achieve state-of-the-art performance, it also exhibits some key disadvantages: inefficiency, resource-intensive computation and making the models less general.
This study investigates the use of learnable prompts, a parameter-efficient fine-tuning alternative,
in spoken language understanding (SLU) tasks. To our knowledge, learnable prompts have not been previously applied to SLU, but have been tested on text-based natural language processing (NLP) tasks and computer vision tasks, achieving promising results. Therefore, we’ll be introducing our proposed approach, using learnable prompts in a SLU context, and analyse some experimental results on two different deep learning-based end-to-end SLU models.
     
    
      Abstract
      Recent advances in the development of extremely large, multi-purpose models have motivated computer scientists to explore methods for adapting them to more specific tasks.
Fine-tuning is the most widely used approach to this problem, in which a more general model is trained on a new dataset of labeled data for the new task. While fine-tuning mitigates the data availability problem and enables models trained on small labeled datasets to achieve state-of-the-art performance, it also exhibits some key disadvantages: inefficiency, resource-intensive computation and making the models less general.
This study investigates the use of learnable prompts, a parameter-efficient fine-tuning alternative,
in spoken language understanding (SLU) tasks. To our knowledge, learnable prompts have not been previously applied to SLU, but have been tested on text-based natural language processing (NLP) tasks and computer vision tasks, achieving promising results. Therefore, we’ll be introducing our proposed approach, using learnable prompts in a SLU context, and analyse some experimental results on two different deep learning-based end-to-end SLU models.
     
  
  
    
    
      Tipologia del documento
      Tesi di laurea
(Laurea magistrale)
      
      
      
      
        
      
        
          Autore della tesi
          Ciapponi, Stefano
          
        
      
        
          Relatore della tesi
          
          
        
      
        
          Correlatore della tesi
          
          
        
      
        
          Scuola
          
          
        
      
        
          Corso di studio
          
          
        
      
        
      
        
      
        
          Ordinamento Cds
          DM270
          
        
      
        
          Parole chiave
          Speech Processing,Spoken Language Understanding,Natural Language Processing,Neural Networks,Model Fine-tuning,Transformers,Artificial Intelligence
          
        
      
        
          Data di discussione della Tesi
          21 Ottobre 2023
          
        
      
      URI
      
      
     
   
  
    Altri metadati
    
      Tipologia del documento
      Tesi di laurea
(NON SPECIFICATO)
      
      
      
      
        
      
        
          Autore della tesi
          Ciapponi, Stefano
          
        
      
        
          Relatore della tesi
          
          
        
      
        
          Correlatore della tesi
          
          
        
      
        
          Scuola
          
          
        
      
        
          Corso di studio
          
          
        
      
        
      
        
      
        
          Ordinamento Cds
          DM270
          
        
      
        
          Parole chiave
          Speech Processing,Spoken Language Understanding,Natural Language Processing,Neural Networks,Model Fine-tuning,Transformers,Artificial Intelligence
          
        
      
        
          Data di discussione della Tesi
          21 Ottobre 2023
          
        
      
      URI
      
      
     
   
  
  
  
  
  
    
    Statistica sui download
    
    
  
  
    
      Gestione del documento: