Jabbour, Rasha
(2023)
Machine learning methods for fall detection.
[Laurea magistrale], Università di Bologna, Corso di Studio in
Artificial intelligence [LM-DM270], Documento full-text non disponibile
Il full-text non è disponibile per scelta dell'autore.
(
Contatta l'autore)
Abstract
This paper outlines the construction and validation of a sophisticated fall detection system using time series data from 3-axial accelerometers embedded in insoles and Machine Learning (ML) algorithms. The research captures and labels movements using a thorough data gathering technique, emphasizing distinct fall patterns, especially in the z-axis values. The research uses meticulous data processing, feature engineering, and exploration of multiple ML methods to build an advanced ensemble model. This model has an F1 score of 0.95, which is more than suitable for the considerate application, and is capable of differentiating between fall and non-fall events. The results highlight the proposed system's potential for real-time fall detection and have important implications for raising the safety of those who are at risk of falling.
Abstract
This paper outlines the construction and validation of a sophisticated fall detection system using time series data from 3-axial accelerometers embedded in insoles and Machine Learning (ML) algorithms. The research captures and labels movements using a thorough data gathering technique, emphasizing distinct fall patterns, especially in the z-axis values. The research uses meticulous data processing, feature engineering, and exploration of multiple ML methods to build an advanced ensemble model. This model has an F1 score of 0.95, which is more than suitable for the considerate application, and is capable of differentiating between fall and non-fall events. The results highlight the proposed system's potential for real-time fall detection and have important implications for raising the safety of those who are at risk of falling.
Tipologia del documento
Tesi di laurea
(Laurea magistrale)
Autore della tesi
Jabbour, Rasha
Relatore della tesi
Scuola
Corso di studio
Ordinamento Cds
DM270
Parole chiave
Machine Learning,Fall Detection,Feature Engineering,Time Series Data,Data Processing
Data di discussione della Tesi
21 Ottobre 2023
URI
Altri metadati
Tipologia del documento
Tesi di laurea
(NON SPECIFICATO)
Autore della tesi
Jabbour, Rasha
Relatore della tesi
Scuola
Corso di studio
Ordinamento Cds
DM270
Parole chiave
Machine Learning,Fall Detection,Feature Engineering,Time Series Data,Data Processing
Data di discussione della Tesi
21 Ottobre 2023
URI
Gestione del documento: