Generation of microwave images for sensitive applications with diffusion models

Biagini, Diego (2023) Generation of microwave images for sensitive applications with diffusion models. [Laurea magistrale], Università di Bologna, Corso di Studio in Artificial intelligence [LM-DM270], Documento full-text non disponibile
Il full-text non è disponibile per scelta dell'autore. (Contatta l'autore)

Abstract

The surge in artificial intelligence advancements has led to remarkable progress in image generative models, which are constantly being applied to new domains and fields of study. This work delves into the usage of Diffusion Models(DMs) in generating intricate synthetic samples in the domain of microwave imaging for security applications. The research explores various techniques that can be applied to image generation with DMs, starting from generating random images and gradually incorporating control mechanisms such as text conditioning and element specification. The main objective of such an activity is to generate synthetic datasets used to augment the training of detection models for security body scanners. The results demonstrate the robustness of diffusion models across diverse architectural and hyperparameter choices. Although synthetic data proved less informative than real data for training detection models, a combination of both enhanced performance. This project sheds light on the potential of synthetic data augmentation in scenarios where data scarcity hampers conventional machine learning approaches, emphasizing the relationship between human guidance and generative models.

Abstract
Tipologia del documento
Tesi di laurea (Laurea magistrale)
Autore della tesi
Biagini, Diego
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Ordinamento Cds
DM270
Parole chiave
machine learning,generative models,diffusion models,microwave images,augmentation,computer vision
Data di discussione della Tesi
21 Ottobre 2023
URI

Altri metadati

Gestione del documento: Visualizza il documento

^