Palmisano, Francesco
(2023)
Human Activity Recognition with insole sensors.
[Laurea magistrale], Università di Bologna, Corso di Studio in
Artificial intelligence [LM-DM270], Documento ad accesso riservato.
Documenti full-text disponibili:
|
Documento PDF (Thesis)
Full-text accessibile solo agli utenti istituzionali dell'Ateneo
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato
Download (7MB)
| Contatta l'autore
|
Abstract
Human Activity Recognition (HAR) has gained a key role in the field of pervasive healthcare. The eSteps Inc. Company offers the monitoring of pre-during and post-hospitalization monitoring of motor disabilities of the lower limbs by providing intelligent insoles and help patients by defining telerehabilitation protocols. This paper offers an HAR study for detecting human activities through eSteps intelligent insoles. The study is focused on acquiring data from healthy, data cleaning and feature extraction which can help to enhance the characteristics of human activities by describing the patients’ style. Later, this paper explores the implementation of different Machine learning and Deep Learning models, according to an appropriate tuning based on Leave-One-Subject-Out Cross-Validation (LOSOCV). In real-time-scenarios, the best model reaches an accuracy of 89% and an F1-score of 90% with a temporal window of 100 samples per second.
Abstract
Human Activity Recognition (HAR) has gained a key role in the field of pervasive healthcare. The eSteps Inc. Company offers the monitoring of pre-during and post-hospitalization monitoring of motor disabilities of the lower limbs by providing intelligent insoles and help patients by defining telerehabilitation protocols. This paper offers an HAR study for detecting human activities through eSteps intelligent insoles. The study is focused on acquiring data from healthy, data cleaning and feature extraction which can help to enhance the characteristics of human activities by describing the patients’ style. Later, this paper explores the implementation of different Machine learning and Deep Learning models, according to an appropriate tuning based on Leave-One-Subject-Out Cross-Validation (LOSOCV). In real-time-scenarios, the best model reaches an accuracy of 89% and an F1-score of 90% with a temporal window of 100 samples per second.
Tipologia del documento
Tesi di laurea
(Laurea magistrale)
Autore della tesi
Palmisano, Francesco
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Ordinamento Cds
DM270
Parole chiave
Human Activity Recognition,wearable sensor,inertial measurement unit sensors,Fourier transformations,Leave-One-Subject-Out Cross-Validation, Machine Learning models,Deep Neural Networks,sliding window
Data di discussione della Tesi
21 Ottobre 2023
URI
Altri metadati
Tipologia del documento
Tesi di laurea
(NON SPECIFICATO)
Autore della tesi
Palmisano, Francesco
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Ordinamento Cds
DM270
Parole chiave
Human Activity Recognition,wearable sensor,inertial measurement unit sensors,Fourier transformations,Leave-One-Subject-Out Cross-Validation, Machine Learning models,Deep Neural Networks,sliding window
Data di discussione della Tesi
21 Ottobre 2023
URI
Statistica sui download
Gestione del documento: