Hypoellipticity on a product of compact Lie groups

Drei, Guido (2023) Hypoellipticity on a product of compact Lie groups. [Laurea magistrale], Università di Bologna, Corso di Studio in Matematica [LM-DM270], Documento ad accesso riservato.
Documenti full-text disponibili:
[thumbnail of Thesis] Documento PDF (Thesis)
Full-text accessibile solo agli utenti istituzionali dell'Ateneo
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato

Download (757kB) | Contatta l'autore

Abstract

In this thesis we study the behaviour of hypoelliptic operators on compact Lie groups. We prove that irreducible unitary representations of a compact group G are finite-dimensional. The Peter–Weyl theorem states that the matrix coefficients of such representations form a orthogonal basis of L2(G), so that every function in L2(G) has a unique Fourier series representation. The Casimir element of G is a translation-invariant elliptic second-order differential operator, analogous to the usual Laplace operator. The matrix entries of each irreducible representation are eigenfunctions of the Laplace operator, with respect to the same eigenvalue. Such eigenvalues form a sequence that accumulates at infinity and any class of equivalence in the unitary dual uniquely determines an eigenspace of finite dimension. Through the operator symbol, smooth functions and distributions are characterised by the rate of growth of their Fourier coefficients and Sobolev spaces are defined. A differential operator P is globally hypoelliptic on G if for each distribution u such that Pu is smooth, then u is a smooth function. The theory and the results that we present over a compact Lie group can be applied in the case of a product of compact Lie groups. We explain necessary and sufficient conditions for global solvability and global hypoellipticity of a vector field X=X1+aX2 over G=G1×G2 with a constant, and of a vector field on G perturbed by a smooth function. The differential operator P is locally hypoelliptic on G if for every open subset U of G, the restricted operator is globally hypoelliptic on U. It is possible to construct differential operators that are globally hypoelliptic but not locally hypoelliptic, as can be seen in the example on the 2-dimensional torus by Fujiwara and Omori. In the last chapter that example is generalized to the case of a product of compact Lie groups G=G1×G2.

Abstract
Tipologia del documento
Tesi di laurea (Laurea magistrale)
Autore della tesi
Drei, Guido
Relatore della tesi
Scuola
Corso di studio
Indirizzo
Curriculum Generale
Ordinamento Cds
DM270
Parole chiave
Compact Lie group,Peter-Weyl Theorem,Finite dimension representations,Symbol operator,Fourier series representation,Sobolev spaces,Global hypoellipticity,Local hypoellipticity
Data di discussione della Tesi
29 Settembre 2023
URI

Altri metadati

Statistica sui download

Gestione del documento: Visualizza il documento

^