Romito, Francesco
 
(2023)
Framework for anomaly detection on photovoltaic plants.
[Laurea magistrale], Università di Bologna, Corso di Studio in 
Artificial intelligence [LM-DM270], Documento full-text non disponibile
  
 
  
  
        
        
	
  
  
  
  
  
  
  
    
      Il full-text non è disponibile per scelta dell'autore.
      
        (
Contatta l'autore)
      
    
  
    
  
  
    
      Abstract
      Technological advancement has undergone exponential growth in recent years, and this has brought significant improvements in the computational capabilities of computers, which can now perform an enormous amount of calculations per second. Taking advantage of these improvements has made it possible to devise algorithms that are very demanding in terms of the computational resources needed to develop architectures capable of solving the most complex problems: currently the most powerful of these are neural networks and in this thesis I will combine these
tecniques with classical computer vision algorithms to improve the speed and accuracy of maintenance in photovoltaic facilities.
     
    
      Abstract
      Technological advancement has undergone exponential growth in recent years, and this has brought significant improvements in the computational capabilities of computers, which can now perform an enormous amount of calculations per second. Taking advantage of these improvements has made it possible to devise algorithms that are very demanding in terms of the computational resources needed to develop architectures capable of solving the most complex problems: currently the most powerful of these are neural networks and in this thesis I will combine these
tecniques with classical computer vision algorithms to improve the speed and accuracy of maintenance in photovoltaic facilities.
     
  
  
    
    
      Tipologia del documento
      Tesi di laurea
(Laurea magistrale)
      
      
      
      
        
      
        
          Autore della tesi
          Romito, Francesco
          
        
      
        
          Relatore della tesi
          
          
        
      
        
          Correlatore della tesi
          
          
        
      
        
          Scuola
          
          
        
      
        
          Corso di studio
          
          
        
      
        
      
        
      
        
          Ordinamento Cds
          DM270
          
        
      
        
          Parole chiave
          YOLO,orthomapping,drone,stratified-split
          
        
      
        
          Data di discussione della Tesi
          3 Febbraio 2023
          
        
      
      URI
      
      
     
   
  
    Altri metadati
    
      Tipologia del documento
      Tesi di laurea
(NON SPECIFICATO)
      
      
      
      
        
      
        
          Autore della tesi
          Romito, Francesco
          
        
      
        
          Relatore della tesi
          
          
        
      
        
          Correlatore della tesi
          
          
        
      
        
          Scuola
          
          
        
      
        
          Corso di studio
          
          
        
      
        
      
        
      
        
          Ordinamento Cds
          DM270
          
        
      
        
          Parole chiave
          YOLO,orthomapping,drone,stratified-split
          
        
      
        
          Data di discussione della Tesi
          3 Febbraio 2023
          
        
      
      URI
      
      
     
   
  
  
  
  
  
  
    
      Gestione del documento: 
      
        