Pagliari, Curzio
 
(2023)
A new concept for a Sport-Coupè car developed with the Industrial Design Structure method (IDeS).
[Laurea magistrale], Università di Bologna, Corso di Studio in 
Ingegneria meccanica [LM-DM270], Documento full-text non disponibile
  
 
  
  
        
        
	
  
  
  
  
  
  
  
    
      Il full-text non è disponibile per scelta dell'autore.
      
        (
Contatta l'autore)
      
    
  
    
  
  
    
      Abstract
      The aim of this study, conducted in collaboration with Lawrence Technological University in Detroit, is to create, through the method of the Industrial Design Structure (IDeS), a new concept for a sport-coupe car, based on a restyling of a retro model (Ford Mustang 1967). To date, vintage models of cars always arouse great interest both for the history behind them and for the classic and elegant style. Designing a model of a vehicle that can combine the charm of retro style with the innovation and comfort of modern cars would allow to meet the needs and desires of a large segment of the market that today is forced to choose between past and future.
Thanks to a well-conceived concept car an automaker company is able to express its future policy, to make a statement of intent as, such a prototype, ticks all the boxes, from glamour and visual wow-factor to technical intrigue and design fascination. 
IDeS is an approach that makes use of many engineering tools to realize a study developed on several steps that must be meticulously organized and timed. With a deep analysis of the trends dominating the automotive industry it is possible to identify a series of product requirements using quality function deployment (QFD). The considerations from this first evaluation led to the definition of the technical specifications via benchmarking (BM) and top-flop analysis (TFA). Then, the structured methodology of stylistic design engineering (SDE) is applied through six phases: (1) stylistic trends analysis; (2) sketches; (3) 2D CAD drawings; (4) 3D CAD models; (5) virtual prototyping; (6) solid stylistic model. Finally, Developing the IDeS method up to the final stages of Prototypes and Testing you get a product as close as possible to the ideal vehicle conceptualized in the initial analysis.
     
    
      Abstract
      The aim of this study, conducted in collaboration with Lawrence Technological University in Detroit, is to create, through the method of the Industrial Design Structure (IDeS), a new concept for a sport-coupe car, based on a restyling of a retro model (Ford Mustang 1967). To date, vintage models of cars always arouse great interest both for the history behind them and for the classic and elegant style. Designing a model of a vehicle that can combine the charm of retro style with the innovation and comfort of modern cars would allow to meet the needs and desires of a large segment of the market that today is forced to choose between past and future.
Thanks to a well-conceived concept car an automaker company is able to express its future policy, to make a statement of intent as, such a prototype, ticks all the boxes, from glamour and visual wow-factor to technical intrigue and design fascination. 
IDeS is an approach that makes use of many engineering tools to realize a study developed on several steps that must be meticulously organized and timed. With a deep analysis of the trends dominating the automotive industry it is possible to identify a series of product requirements using quality function deployment (QFD). The considerations from this first evaluation led to the definition of the technical specifications via benchmarking (BM) and top-flop analysis (TFA). Then, the structured methodology of stylistic design engineering (SDE) is applied through six phases: (1) stylistic trends analysis; (2) sketches; (3) 2D CAD drawings; (4) 3D CAD models; (5) virtual prototyping; (6) solid stylistic model. Finally, Developing the IDeS method up to the final stages of Prototypes and Testing you get a product as close as possible to the ideal vehicle conceptualized in the initial analysis.
     
  
  
    
    
      Tipologia del documento
      Tesi di laurea
(Laurea magistrale)
      
      
      
      
        
      
        
          Autore della tesi
          Pagliari, Curzio
          
        
      
        
          Relatore della tesi
          
          
        
      
        
          Correlatore della tesi
          
          
        
      
        
          Scuola
          
          
        
      
        
          Corso di studio
          
          
        
      
        
          Indirizzo
          CURRICULUM BIOMECCANICA
          
        
      
        
      
        
          Ordinamento Cds
          DM270
          
        
      
        
          Parole chiave
          Industrial Design Structure (IDeS),Stylistic Design Engineering (SDE),Quality Function Deployment (QFD),Benchmarking (BM),Additive Manufacturing (AM),Augmented Reality (AR),surface modelling,concept car
          
        
      
        
          Data di discussione della Tesi
          3 Febbraio 2023
          
        
      
      URI
      
      
     
   
  
    Altri metadati
    
      Tipologia del documento
      Tesi di laurea
(NON SPECIFICATO)
      
      
      
      
        
      
        
          Autore della tesi
          Pagliari, Curzio
          
        
      
        
          Relatore della tesi
          
          
        
      
        
          Correlatore della tesi
          
          
        
      
        
          Scuola
          
          
        
      
        
          Corso di studio
          
          
        
      
        
          Indirizzo
          CURRICULUM BIOMECCANICA
          
        
      
        
      
        
          Ordinamento Cds
          DM270
          
        
      
        
          Parole chiave
          Industrial Design Structure (IDeS),Stylistic Design Engineering (SDE),Quality Function Deployment (QFD),Benchmarking (BM),Additive Manufacturing (AM),Augmented Reality (AR),surface modelling,concept car
          
        
      
        
          Data di discussione della Tesi
          3 Febbraio 2023
          
        
      
      URI
      
      
     
   
  
  
  
  
  
  
    
      Gestione del documento: 
      
        