Traffic Signal Optimization of Urban Arterial Network by Vehicle-to-Infrastructure

Rejuso, Billy John Rudolfh Ibonia (2023) Traffic Signal Optimization of Urban Arterial Network by Vehicle-to-Infrastructure. [Laurea magistrale], Università di Bologna, Corso di Studio in Civil engineering [LM-DM270], Documento ad accesso riservato.
Documenti full-text disponibili:
[img] Documento PDF (Thesis)
Full-text accessibile solo agli utenti istituzionali dell'Ateneo
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato

Download (6MB) | Contatta l'autore

Abstract

Urbanization has occasionally been linked to negative consequences. Traffic light system in urban arterial networks plays an essential role to the operation of transport systems. The availability of new Intelligent Transportation System innovations paved the way for connecting vehicles and road infrastructure. GLOSA, or the Green Light Optimal Speed Advisory, is a recent integration of vehicle-to-everything (v2x) technology. This thesis emphasized GLOSA system's potential as a tool for addressing traffic signal optimization. GLOSA serves as an advisory to drivers, informing them of the speed they must maintain to reduce waiting time. The considered study area in this thesis is the Via Aurelio Saffi – Via Emilia Ponente corridor in the Metropolitan City of Bologna which has several signalized intersections. Several simulation runs were performed in SUMOPy software on each peak-hour period (morning and afternoon) using recent actual traffic count data. GLOSA devices were placed on a 300m GLOSA distance. Considering the morning peak-hour, GLOSA outperformed the actuated traffic signal control, which is the baseline scenario, in terms of average waiting time, average speed, average fuel consumption per vehicle and average CO2 emissions. A remarkable 97% reduction on both fuel consumption and CO2 emissions were obtained. The average speed of vehicles running through the simulation was increased as well by 7% and a time saved of 25%. Same results were obtained for the afternoon peak hour with a decrease of 98% on both fuel consumption and CO2 emissions, 20% decrease on average waiting time, and an increase of 2% in average speed. In addition to previously mentioned benefits of GLOSA, a 15% and 13% decrease in time loss were obtained during morning and afternoon peak-hour, respectively. Towards the goal of sustainability, GLOSA shows a promising result of significantly lowering fuel consumption and CO2 emissions per vehicle.

Abstract
Tipologia del documento
Tesi di laurea (Laurea magistrale)
Autore della tesi
Rejuso, Billy John Rudolfh Ibonia
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Indirizzo
CURRICULUM SUSTAINABLE MOBILITY IN URBAN AREAS
Ordinamento Cds
DM270
Parole chiave
Intelligent Transportation Systems,Intelligent Traffic Lights,GLOSA,V2X,traffic signal optimization
Data di discussione della Tesi
2 Febbraio 2023
URI

Altri metadati

Statistica sui download

Gestione del documento: Visualizza il documento

^