Graph-based User Scheduling for MIMO LEO-based Satellite Communication Systems

Bagheralmousavi, Nima (2022) Graph-based User Scheduling for MIMO LEO-based Satellite Communication Systems. [Laurea magistrale], Università di Bologna, Corso di Studio in Telecommunications engineering [LM-DM270], Documento full-text non disponibile
Il full-text non è disponibile per scelta dell'autore. (Contatta l'autore)

Abstract

The study of the user scheduling problem in a Low Earth Orbit (LEO) Multi-User MIMO system is the objective of this thesis. With the application of cutting-edge digital beamforming algorithms, a LEO satellite with an antenna array and a large number of antenna elements can provide service to many user terminals (UTs) in full frequency reuse (FFR) schemes. Since the number of UTs on-ground are many more than the transmit antennas on the satellite, user scheduling is necessary. Scheduling can be accomplished by grouping users into different clusters: users within the same cluster are multiplexed and served together via Space Division Multiple Access (SDMA), i.e., digital beamforming or Multi-User MIMO techniques; the different clusters of users are then served on different time slots via Time Division Multiple Access (TDMA). The design of an optimal user grouping strategy is known to be an NP-complete problem which can be solved only through exhaustive search. In this thesis, we provide a graph-based user scheduling and feed space beamforming architecture for the downlink with the aim of reducing user inter-beam interference. The main idea is based on clustering users whose pairwise great-circle distance is as large as possible. First, we create a graph where the users represent the vertices, whereas an edge in the graph between 2 users exists if their great-circle distance is above a certain threshold. In the second step, we develop a low complex greedy user clustering technique and we iteratively search for the maximum clique in the graph, i.e., the largest fully connected subgraph in the graph. Finally, by using the 3 aforementioned power normalization techniques, a Minimum Mean Square Error (MMSE) beamforming matrix is deployed on a cluster basis. The suggested scheduling system is compared with a position-based scheduler, which generates a beam lattice on the ground and randomly selects one user per beam to form a cluster.

Abstract
Tipologia del documento
Tesi di laurea (Laurea magistrale)
Autore della tesi
Bagheralmousavi, Nima
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Ordinamento Cds
DM270
Parole chiave
LEO Satellite,Maximum clique,Precoding,5G/6G,Geographical Scheduling,Clustering Scheduling,AI
Data di discussione della Tesi
5 Dicembre 2022
URI

Altri metadati

Gestione del documento: Visualizza il documento

^