Deep Learning applicato alla diagnostica dei trasformatori

Papini, Michele (2022) Deep Learning applicato alla diagnostica dei trasformatori. [Laurea magistrale], Università di Bologna, Corso di Studio in Ingegneria dell’energia elettrica [LM-DM270], Documento full-text non disponibile
Il full-text non è disponibile per scelta dell'autore. (Contatta l'autore)

Abstract

Il trasformatore è uno degli elementi più importanti di una rete di trasmissione; essendo il tramite fra reti di alta e media tensione, il suo corretto funzionamento garantisce l’alimentazione di tutti i dispositivi e carichi connessi alla linea. Oltre a questo, il trasformatore è anche l’elemento più costoso di tutta la linea elettrica; la sua manutenzione è di vitale importanza per evitare costi elevati per la sostituzione e disagi lungo la linea. Qui entra in gioco il ruolo della diagnostica; attraverso misure periodiche e mirate sul trasformatore è possibile agire tempestivamente ed evitare tutti i fenomeni precedentemente elencati. Nell’elaborato si tratterà l’analisi del trasformatore elettrico trifase durante il suo funzionamento, evidenziando i sottocomponenti e le rispettive criticità; inoltre, verranno mostrate le varie tecniche di diagnostica del trasformatore, in modo tale da poter estrarre un indice legato allo stato di vita, ossia l’Health Index. Ad oggi esistono diverse tecniche di approccio al calcolo dell’Health Index, quella che viene presentata è una tecnica del tutto innovativa, ossia sviluppare una rete neurale artificiale (Artificial Neural Network, ANN) in grado di prevedere lo stato del trasformatore basandosi su misure effettuate sullo stesso. Dunque, verranno presentante le basi per lo sviluppo di una rete neurale, partendo dall’analisi e formattazione dei dati, fino alla fase di ottimizzazione delle prestazioni. Infine, si attraverseranno tutte le fasi intermedie di realizzazione del progetto da cui l’elaborato prende il titolo; osservando l’evoluzione di una rete neurale che si trasforma da un programma scritto in ambiente Python a una applicazione pronta all’uso per gli operatori durante le operazioni di diagnostica.

Abstract
Tipologia del documento
Tesi di laurea (Laurea magistrale)
Autore della tesi
Papini, Michele
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Indirizzo
Ingegneria dell'energia elettrica
Ordinamento Cds
DM270
Parole chiave
trasformatore,diagnostica,reti neurali,Health Index
Data di discussione della Tesi
5 Dicembre 2022
URI

Altri metadati

Gestione del documento: Visualizza il documento

^