Giuliani, Luca
(2022)
Il Teorema di Arnold-Liouville.
[Laurea], Università di Bologna, Corso di Studio in
Matematica [L-DM270], Documento ad accesso riservato.
Documenti full-text disponibili:
|
Documento PDF (Thesis)
Full-text accessibile solo agli utenti istituzionali dell'Ateneo
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato
Download (416kB)
| Contatta l'autore
|
Abstract
Lo scopo della tesi è dimostrare il teorema di Arnold-Liouville, il quale afferma che dato un sistema a n gradi di libertà, con n integrali primi del moto in involuzione, esiste una trasformazione canonica di variabili azione-angolo, attraverso la quale si può riscrivere il sistema in uno ad esso equivalente, ma dipendente solo dalle azioni. Per arrivare a questo risultato nel primo capitolo viene richiamata la nozione di sistema hamiltoniano, di flusso del sistema e delle sue proprietà, viene infine introdotta una operazione binaria tra funzioni, la parentesi di Poisson, evidenziando il suo legame con il formalismo hamiltoniano. Nel secondo capitolo si definisce inizialmente cos'è una trasformazione canonica di variabili, dimostrando poi alcuni criteri per la canonicità di queste, mediante la verifica di determinate condizione necessarie e sufficienti, con opportuni esempi di trasformazioni canoniche e non. Nel terzo capitolo si definisce cos'è un sistema hamiltoniano integrabile, facendone successivamente un esempio a un grado di libertà con il pendolo. Il procedimento svolto in questo esempio si vorrà poi estendere a un generico sistema a n gradi di libertà, dunque verrà enunciato e dimostrato il teorema di Arnold-Liouvill, il quale, sotto opportune ipotesi, permette di risolvere questo problema.
Abstract
Lo scopo della tesi è dimostrare il teorema di Arnold-Liouville, il quale afferma che dato un sistema a n gradi di libertà, con n integrali primi del moto in involuzione, esiste una trasformazione canonica di variabili azione-angolo, attraverso la quale si può riscrivere il sistema in uno ad esso equivalente, ma dipendente solo dalle azioni. Per arrivare a questo risultato nel primo capitolo viene richiamata la nozione di sistema hamiltoniano, di flusso del sistema e delle sue proprietà, viene infine introdotta una operazione binaria tra funzioni, la parentesi di Poisson, evidenziando il suo legame con il formalismo hamiltoniano. Nel secondo capitolo si definisce inizialmente cos'è una trasformazione canonica di variabili, dimostrando poi alcuni criteri per la canonicità di queste, mediante la verifica di determinate condizione necessarie e sufficienti, con opportuni esempi di trasformazioni canoniche e non. Nel terzo capitolo si definisce cos'è un sistema hamiltoniano integrabile, facendone successivamente un esempio a un grado di libertà con il pendolo. Il procedimento svolto in questo esempio si vorrà poi estendere a un generico sistema a n gradi di libertà, dunque verrà enunciato e dimostrato il teorema di Arnold-Liouvill, il quale, sotto opportune ipotesi, permette di risolvere questo problema.
Tipologia del documento
Tesi di laurea
(Laurea)
Autore della tesi
Giuliani, Luca
Relatore della tesi
Scuola
Corso di studio
Ordinamento Cds
DM270
Parole chiave
Hamiltoniana flusso trasformazione canonica parentesi di Poisson variabili azione-angolo
Data di discussione della Tesi
28 Ottobre 2022
URI
Altri metadati
Tipologia del documento
Tesi di laurea
(NON SPECIFICATO)
Autore della tesi
Giuliani, Luca
Relatore della tesi
Scuola
Corso di studio
Ordinamento Cds
DM270
Parole chiave
Hamiltoniana flusso trasformazione canonica parentesi di Poisson variabili azione-angolo
Data di discussione della Tesi
28 Ottobre 2022
URI
Statistica sui download
Gestione del documento: