“Study of Electro-thermal Effects on PLA Materials Fed with AC Currents”

Ojoawo, Olatunji Julius (2022) “Study of Electro-thermal Effects on PLA Materials Fed with AC Currents”. [Laurea magistrale], Università di Bologna, Corso di Studio in Ingegneria dell’energia elettrica [LM-DM270]
Documenti full-text disponibili:
[thumbnail of Thesis] Documento PDF (Thesis)
Disponibile con Licenza: Creative Commons: Attribuzione - Non commerciale - Non opere derivate 4.0 (CC BY-NC-ND 4.0)

Download (3MB)

Abstract

Given the rise in the emergence of new composite materials, their multifunctional properties, and possible applications in simple and complex structural components, there has been a need to unravel the characterization of these materials. The possibility of printing these conductive composite materials has opened a new area in the design of structural components which can conduct, transmit, and modulate electric signals with no limitation from complex geometry. Although several works have researched the behaviour of polymeric composites due to the immediate growth, however, the electrothermal behaviour of the material when subjected to varying AC applied voltage (Joule’s effect) has not been thoroughly researched. This study presents the characterization of the electrothermal behaviour of conductive composites of a polylactic acid matrix reinforced with conductive carbon black particles (CB-PLA). An understanding of this behaviour would contribute to the improved work in additive manufacturing of functional electro-mechanical conductive materials with potential application in energy systems, bioelectronics, etc. In this study, the electrothermal interplay is monitored under applied AC voltage, varying lengths, and filament printing orientations (longitudinal, oblique, and transverse). Each sample was printed using the fused deposition modeling technique such that each specimen has three different lengths (1L, 2L, 2.75L). To this end, deductions were made on properties that affect composite’s efficiency and life expectancy. The result of this study shows a great influence of printing orientation on material properties of 3D printed conductive composites of CB-PLA. The result also identifies the contribution of AC applied voltage to composites' stabilization time. This knowledge is important to provide experimental background for components' electrothermal interplay, estimate possible degradation and operating limits of composite structures when used in applications.

Abstract
Tipologia del documento
Tesi di laurea (Laurea magistrale)
Autore della tesi
Ojoawo, Olatunji Julius
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Indirizzo
Electrical Engineering
Ordinamento Cds
DM270
Parole chiave
Electro-thermal,Additive Manufacturing,Multifunctional,Printing Orientations,Polylactic acid,Carbon Black,Fused Deposition Modeling
Data di discussione della Tesi
5 Ottobre 2022
URI

Altri metadati

Statistica sui download

Gestione del documento: Visualizza il documento

^