Amenta, Elisa
(2022)
Campi magnetici in astrofisica.
[Laurea], Università di Bologna, Corso di Studio in
Astronomia [L-DM270]
Documenti full-text disponibili:
Abstract
Circa 2500 anni fa, a Magnesia, l’uomo scopriva la magnetite, un minerale del ferro che ha un contenuto di metallo particolarmente alto. Fu così che l’umanità venne a contatto per la prima volta, più o meno consapevolmente, con gli effetti dei campi magnetici. Già il filosofo greco Talete di Mileto nel VI secolo a.C. descrisse gli effetti di tali pietre, ma l’umanità non smise di esserne affascinata.
Un esempio astronomicamente noto di campo magnetico su ampia scala è quello terrestre: il nostro pianeta si può pensare come un grosso magnete con un campo di BE ≈ 0.3...0.5G, che tra le altre cose ci protegge dalle particelle ad altissima energia intrappolandole nelle cosiddette fasce di Van Allen. Vi sono poi campi magnetici molto più intensi, a partire da quelli generati in altri pianeti, come Giove, o di stelle e altri corpi celesti particolarmente densi, che possono raggiungere i 10^15G. Ma i campi magnetici sono largamente diffusi anche in tutto lo spazio interstellare e intergalattico, dove hanno valori molto inferiori, che sfiorano i pochi μG.
Come si può intuire, un così ampio spettro di valori si traduce in un’altrettanto ricca gamma di metodi di rilevazione. In particolare, in questo elaborato, ci concentreremo soprattutto sui metodi di studio dei campi magnetici meno intensi, la cui conoscenza si basa sulle proprietà osservabili della radiazione di sincrotrone, principalmente indi- viduabili dai dati radio. Dedichiamo quindi un breve capitolo alla derivazione dello spettro della radiazione suddetta (Capitolo 2), preceduto da un accenno alle proprietà energetiche dei plasmi magnetizzati (Capitolo 1). Ci occupiamo infine per l’intero Capitolo 3 di alcuni tra i più diffusi metodi diagnostici, preferendo, come già anticipa- to quelli che analizzano gli spettri prodotti da elettroni relativistici in moto in campi magnetici, ma attraversando comunque gli effetti dei plasmi magnetizzati sulla propagazione della luce e sulla separazione delle righe spettrali.
Abstract
Circa 2500 anni fa, a Magnesia, l’uomo scopriva la magnetite, un minerale del ferro che ha un contenuto di metallo particolarmente alto. Fu così che l’umanità venne a contatto per la prima volta, più o meno consapevolmente, con gli effetti dei campi magnetici. Già il filosofo greco Talete di Mileto nel VI secolo a.C. descrisse gli effetti di tali pietre, ma l’umanità non smise di esserne affascinata.
Un esempio astronomicamente noto di campo magnetico su ampia scala è quello terrestre: il nostro pianeta si può pensare come un grosso magnete con un campo di BE ≈ 0.3...0.5G, che tra le altre cose ci protegge dalle particelle ad altissima energia intrappolandole nelle cosiddette fasce di Van Allen. Vi sono poi campi magnetici molto più intensi, a partire da quelli generati in altri pianeti, come Giove, o di stelle e altri corpi celesti particolarmente densi, che possono raggiungere i 10^15G. Ma i campi magnetici sono largamente diffusi anche in tutto lo spazio interstellare e intergalattico, dove hanno valori molto inferiori, che sfiorano i pochi μG.
Come si può intuire, un così ampio spettro di valori si traduce in un’altrettanto ricca gamma di metodi di rilevazione. In particolare, in questo elaborato, ci concentreremo soprattutto sui metodi di studio dei campi magnetici meno intensi, la cui conoscenza si basa sulle proprietà osservabili della radiazione di sincrotrone, principalmente indi- viduabili dai dati radio. Dedichiamo quindi un breve capitolo alla derivazione dello spettro della radiazione suddetta (Capitolo 2), preceduto da un accenno alle proprietà energetiche dei plasmi magnetizzati (Capitolo 1). Ci occupiamo infine per l’intero Capitolo 3 di alcuni tra i più diffusi metodi diagnostici, preferendo, come già anticipa- to quelli che analizzano gli spettri prodotti da elettroni relativistici in moto in campi magnetici, ma attraversando comunque gli effetti dei plasmi magnetizzati sulla propagazione della luce e sulla separazione delle righe spettrali.
Tipologia del documento
Tesi di laurea
(Laurea)
Autore della tesi
Amenta, Elisa
Relatore della tesi
Scuola
Corso di studio
Ordinamento Cds
DM270
Parole chiave
Campi Magnetici,Radiazione di Sincrotrone,Spettro,Radio,Effetto Zeeman,Synchrotron Self-Compton,Auto-assorbimento,Rilevazione,Astrofisica
Data di discussione della Tesi
23 Settembre 2022
URI
Altri metadati
Tipologia del documento
Tesi di laurea
(NON SPECIFICATO)
Autore della tesi
Amenta, Elisa
Relatore della tesi
Scuola
Corso di studio
Ordinamento Cds
DM270
Parole chiave
Campi Magnetici,Radiazione di Sincrotrone,Spettro,Radio,Effetto Zeeman,Synchrotron Self-Compton,Auto-assorbimento,Rilevazione,Astrofisica
Data di discussione della Tesi
23 Settembre 2022
URI
Statistica sui download
Gestione del documento: