Spectral methods in geometric deep learning

Azzani, Alessandro (2022) Spectral methods in geometric deep learning. [Laurea], Università di Bologna, Corso di Studio in Fisica [L-DM270], Documento ad accesso riservato.
Documenti full-text disponibili:
[img] Documento PDF (Thesis)
Full-text accessibile solo agli utenti istituzionali dell'Ateneo
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato

Download (3MB) | Contatta l'autore

Abstract

Questa tesi propone una panoramica sul funzionamento interno delle architetture alla base del deep learning e in particolare del geometric deep learning. Iniziando a discutere dalla storia degli algoritmi di intelligenza artificiale, vengono introdotti i principali costituenti di questi. In seguito vengono approfonditi alcuni elementi della teoria dei grafi, in particolare il concetto di laplaciano discreto e il suo ruolo nello studio del fenomeno di diffusione sui grafi. Infine vengono presentati alcuni algoritmi utilizzati nell'ambito del geometric deep learning su grafi per la classificazione di nodi. I concetti discussi vengono poi applicati nella realizzazione di un'architettura in grado di classficiare i nodi del dataset Zachary Karate Club.

Abstract
Tipologia del documento
Tesi di laurea (Laurea)
Autore della tesi
Azzani, Alessandro
Relatore della tesi
Scuola
Corso di studio
Ordinamento Cds
DM270
Parole chiave
Spectral methods,Graphs,Geometric deep learning,Neural networks
Data di discussione della Tesi
22 Luglio 2022
URI

Altri metadati

Statistica sui download

Gestione del documento: Visualizza il documento

^