Bayesian Linear Regression for estimation of the Fractal Dimension of the Cerebral Cortex

Merli, Edoardo (2022) Bayesian Linear Regression for estimation of the Fractal Dimension of the Cerebral Cortex. [Laurea], Università di Bologna, Corso di Studio in Informatica [L-DM270], Documento full-text non disponibile
Il full-text non è disponibile per scelta dell'autore. (Contatta l'autore)

Abstract

The cerebral cortex presents self-similarity in a proper interval of spatial scales, a property typical of natural objects exhibiting fractal geometry. Its complexity therefore can be characterized by the value of its fractal dimension (FD). In the computation of this metric, it has usually been employed a frequentist approach to probability, with point estimator methods yielding only the optimal values of the FD. In our study, we aimed at retrieving a more complete evaluation of the FD by utilizing a Bayesian model for the linear regression analysis of the box-counting algorithm. We used T1-weighted MRI data of 86 healthy subjects (age 44.2 ± 17.1 years, mean ± standard deviation, 48% males) in order to gain insights into the confidence of our measure and investigate the relationship between mean Bayesian FD and age. Our approach yielded a stronger and significant (P < .001) correlation between mean Bayesian FD and age as compared to the previous implementation. Thus, our results make us suppose that the Bayesian FD is a more truthful estimation for the fractal dimension of the cerebral cortex compared to the frequentist FD.

Abstract
Tipologia del documento
Tesi di laurea (Laurea)
Autore della tesi
Merli, Edoardo
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Ordinamento Cds
DM270
Parole chiave
Neuroimaging,Fractal dimension,Bayesian Linear Regression,Markov Chain Monte Carlo,Cerebral cortex,Hamiltonian Monte Carlo
Data di discussione della Tesi
13 Luglio 2022
URI

Altri metadati

Gestione del documento: Visualizza il documento

^