Quantum computing and post-quantum cryptography

Murolo, Giuseppe (2022) Quantum computing and post-quantum cryptography. [Laurea magistrale], Università di Bologna, Corso di Studio in Matematica [LM-DM270]
Documenti full-text disponibili:
[thumbnail of Thesis] Documento PDF (Thesis)
Disponibile con Licenza: Creative Commons: Attribuzione - Non commerciale - Non opere derivate 4.0 (CC BY-NC-ND 4.0)

Download (3MB)

Abstract

One of the main practical implications of quantum mechanical theory is quantum computing, and therefore the quantum computer. Quantum computing (for example, with Shor’s algorithm) challenges the computational hardness assumptions, such as the factoring problem and the discrete logarithm problem, that anchor the safety of cryptosystems. So the scientific community is studying how to defend cryptography; there are two defense strategies: the quantum cryptography (which involves the use of quantum cryptographic algorithms on quantum computers) and the post-quantum cryptography (based on classical cryptographic algorithms, but resistant to quantum computers). For example, National Institute of Standards and Technology (NIST) is collecting and standardizing the post-quantum ciphers, as it established DES and AES as symmetric cipher standards, in the past. In this thesis an introduction on quantum mechanics was given, in order to be able to talk about quantum computing and to analyze Shor’s algorithm. The differences between quantum and post-quantum cryptography were then analyzed. Subsequently the focus was given to the mathematical problems assumed to be resistant to quantum computers. To conclude, post-quantum digital signature cryptographic algorithms selected by NIST were studied and compared in order to apply them in today’s life.

Abstract
Tipologia del documento
Tesi di laurea (Laurea magistrale)
Autore della tesi
Murolo, Giuseppe
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Indirizzo
Curriculum A: Generale e applicativo
Ordinamento Cds
DM270
Parole chiave
quantum cryptography digital signature encryption rsa shor public key nist computing post-quantum quantistic elliptic curves decryption
Data di discussione della Tesi
25 Marzo 2022
URI

Altri metadati

Statistica sui download

Gestione del documento: Visualizza il documento

^