Detection and characterization of galaxy clusters in the COSMOS field with the AMICO algorithm

Toni, Greta (2022) Detection and characterization of galaxy clusters in the COSMOS field with the AMICO algorithm. [Laurea magistrale], Università di Bologna, Corso di Studio in Astrofisica e cosmologia [LM-DM270]
Documenti full-text disponibili:
[thumbnail of Thesis] Documento PDF (Thesis)
Disponibile con Licenza: Creative Commons: Attribuzione - Non commerciale - Non opere derivate 4.0 (CC BY-NC-ND 4.0)

Download (16MB)

Abstract

In this work we made use of the AMICO algorithm to detect clusters in COSMOS2015, a photometric galaxy catalogue of the COSMOS field (Laigle+16). We divided our study in two different analyses being the cluster search on r-band photometry in the range 0<z<1.25 and on the H-band photometry in the range 0<z< 1.8. We detected a total number of 481 clusters over the COSMOS field area. We also identified the cluster member galaxies by assigning them a probabilistic membership. During the cluster search we introduced some new methods within AMICO, to allow its application on new kinds of data-sets. Thank to the rich multi-wavelength covering of the COSMOS field, we identified the X-ray counterparts of out optical detections, by making use of the publicly available catalogues produced by Gozaliasl+19 and George+11 and of the X-ray 0.5-2 keV emission map (Gozaliasl+19). This comparison has been carried out with the main goal of testing the consistency between the AMICO catalogues and the X-ray ones. These latter were also used to compare the reliability of our different analyses. Moreover, we calibrated the AMICO mass proxies scaling relations using the available X-ray mass estimates.

Abstract
Tipologia del documento
Tesi di laurea (Laurea magistrale)
Autore della tesi
Toni, Greta
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Ordinamento Cds
DM270
Parole chiave
galaxy cluster,cosmology,clusters,galaxies,observations,COSMOS,AMICO,optical survey,X-rays,matched filter,detection algorithm,cluster detection
Data di discussione della Tesi
18 Marzo 2022
URI

Altri metadati

Statistica sui download

Gestione del documento: Visualizza il documento

^