Fractional Perimeter and Nonlocal Minimal Surfaces

Merlino, Enzo Maria (2021) Fractional Perimeter and Nonlocal Minimal Surfaces. [Laurea magistrale], Università di Bologna, Corso di Studio in Matematica [LM-DM270], Documento full-text non disponibile
Il full-text non è disponibile per scelta dell'autore. (Contatta l'autore)

Abstract

This work aims to present a study of the principal results about the fractional perimeter and the regularity theory of nonlocal minimal surfaces. The fractional perimeter is a variation of the classical notion of Caccioppoli perimeter, recently introduced by L. Caffarelli, J.-M. Roquejoffre and O. Savin, that takes into account also long-range point-wise interactions between sets, modulated by a kernel with polynomial decay. That type of nonlocal minimal surfaces arises naturally, for instance, in the study of fractals and phase transitions models. First of all, we de�fine the fractional perimeter, and applying classical direct methods of Calculus of Variations we prove existence and compactness results for the corresponding minimizers. Then we deal with the regularity properties of such objects. Finally, we study a calibration result concerning nonlocal perimeters within Carnot groups.

Abstract
Tipologia del documento
Tesi di laurea (Laurea magistrale)
Autore della tesi
Merlino, Enzo Maria
Relatore della tesi
Scuola
Corso di studio
Indirizzo
Curriculum A: Generale e applicativo
Ordinamento Cds
DM270
Parole chiave
fractional perimeter,nonlocal minimal surfaces,nonlocal mean curvature,calibration,Carnot groups,regularity,nonlocal minimal cones,fractional Sobolev spaces,fractional Laplacian
Data di discussione della Tesi
29 Ottobre 2021
URI

Altri metadati

Gestione del documento: Visualizza il documento

^