Graph neural networks: theory and applications

Pappone, Francesco (2021) Graph neural networks: theory and applications. [Laurea], Università di Bologna, Corso di Studio in Fisica [L-DM270], Documento ad accesso riservato.
Documenti full-text disponibili:
[thumbnail of Thesis] Documento PDF (Thesis)
Full-text accessibile solo agli utenti istituzionali dell'Ateneo
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato

Download (5MB) | Contatta l'autore

Abstract

Le reti neurali artificiali hanno visto, negli ultimi anni, una crescita vertiginosa nelle loro applicazioni e nelle architetture dei modelli impiegati. In questa tesi introduciamo le reti neurali su domini euclidei, in particolare mostrando l’importanza dell’equivarianza di traslazione nelle reti convoluzionali, e introduciamo, per analogia, un’estensione della convoluzione a dati strutturati come grafi. Inoltre presentiamo le architetture dei principali Graph Neural Network ed esponiamo, per ognuna delle tre architetture proposte (Spectral graph Convolutional Network, Graph Convolutional Network, Graph Attention neTwork) un’applicazione che ne mostri sia il funzionamento che l’importanza. Discutiamo, ulteriormente, l’implementazione di un algoritmo di classificazione basato su due varianti dell’architettura Graph Convolutional Network, addestrato e testato sul dataset PROTEINS, capace di classificare le proteine del dataset in due categorie: enzimi e non enzimi.

Abstract
Tipologia del documento
Tesi di laurea (Laurea)
Autore della tesi
Pappone, Francesco
Relatore della tesi
Scuola
Corso di studio
Ordinamento Cds
DM270
Parole chiave
AI,Machine Learning,GNN,Convolution,Graphs,GAT,GCN,SCNN
Data di discussione della Tesi
17 Settembre 2021
URI

Altri metadati

Statistica sui download

Gestione del documento: Visualizza il documento

^