Mazzoni, Michele
 
(2021)
Generalized hydrodynamics of a
(1+1)-dimensional integrable scattering
theory with roaming trajectories.
[Laurea magistrale], Università di Bologna, Corso di Studio in 
Physics [LM-DM270]
   
  
  
        
        
	
  
  
  
  
  
  
  
    
  
    
      Documenti full-text disponibili:
      
        
          
            | ![[thumbnail of Thesis]](https://amslaurea.unibo.it/style/images/fileicons/application_pdf.png) | Documento PDF (Thesis) Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato
 Download (1MB)
 | 
        
      
    
  
  
    
      Abstract
      The emergence of hydrodynamic features in off-equilibrium (1 + 1)-dimensional integrable quantum systems has been the object of increasing attention in recent years. In
this Master Thesis, we combine Thermodynamic Bethe Ansatz (TBA) techniques for
finite-temperature quantum field theories with the Generalized Hydrodynamics (GHD)
picture to provide a theoretical and numerical analysis of Zamolodchikov’s staircase
model both at thermal equilibrium and in inhomogeneous generalized Gibbs ensembles.
The staircase model is a diagonal (1 + 1)-dimensional integrable scattering theory with
the remarkable property of roaming between infinitely many critical points when moving
along a renormalization group trajectory. Namely, the finite-temperature dimensionless
ground-state energy of the system approaches the central charges of all the minimal unitary conformal field theories (CFTs) M_p as the temperature varies. Within the GHD
framework we develop a detailed study of the staircase model’s hydrodynamics and compare its quite surprising features to those displayed by a class of non-diagonal massless
models flowing between adjacent points in the M_p series. Finally, employing both TBA
and GHD techniques, we generalize to higher-spin local and quasi-local conserved charges
the results obtained by B. Doyon and D. Bernard [1] for the steady-state energy current
in off-equilibrium conformal field theories.
     
    
      Abstract
      The emergence of hydrodynamic features in off-equilibrium (1 + 1)-dimensional integrable quantum systems has been the object of increasing attention in recent years. In
this Master Thesis, we combine Thermodynamic Bethe Ansatz (TBA) techniques for
finite-temperature quantum field theories with the Generalized Hydrodynamics (GHD)
picture to provide a theoretical and numerical analysis of Zamolodchikov’s staircase
model both at thermal equilibrium and in inhomogeneous generalized Gibbs ensembles.
The staircase model is a diagonal (1 + 1)-dimensional integrable scattering theory with
the remarkable property of roaming between infinitely many critical points when moving
along a renormalization group trajectory. Namely, the finite-temperature dimensionless
ground-state energy of the system approaches the central charges of all the minimal unitary conformal field theories (CFTs) M_p as the temperature varies. Within the GHD
framework we develop a detailed study of the staircase model’s hydrodynamics and compare its quite surprising features to those displayed by a class of non-diagonal massless
models flowing between adjacent points in the M_p series. Finally, employing both TBA
and GHD techniques, we generalize to higher-spin local and quasi-local conserved charges
the results obtained by B. Doyon and D. Bernard [1] for the steady-state energy current
in off-equilibrium conformal field theories.
     
  
  
    
    
      Tipologia del documento
      Tesi di laurea
(Laurea magistrale)
      
      
      
      
        
      
        
          Autore della tesi
          Mazzoni, Michele
          
        
      
        
          Relatore della tesi
          
          
        
      
        
          Correlatore della tesi
          
          
        
      
        
          Scuola
          
          
        
      
        
          Corso di studio
          
          
        
      
        
          Indirizzo
          THEORETICAL PHYSICS
          
        
      
        
      
        
          Ordinamento Cds
          DM270
          
        
      
        
          Parole chiave
          integrability,quantum field theory,conformal field theory,thermodynamic Bethe ansatz,S-matrix theory,Generalized hydrodynamics,staircase model,roaming trajectories,higher-spin currents,A_n massless flows
          
        
      
        
          Data di discussione della Tesi
          26 Marzo 2021
          
        
      
      URI
      
      
     
   
  
    Altri metadati
    
      Tipologia del documento
      Tesi di laurea
(NON SPECIFICATO)
      
      
      
      
        
      
        
          Autore della tesi
          Mazzoni, Michele
          
        
      
        
          Relatore della tesi
          
          
        
      
        
          Correlatore della tesi
          
          
        
      
        
          Scuola
          
          
        
      
        
          Corso di studio
          
          
        
      
        
          Indirizzo
          THEORETICAL PHYSICS
          
        
      
        
      
        
          Ordinamento Cds
          DM270
          
        
      
        
          Parole chiave
          integrability,quantum field theory,conformal field theory,thermodynamic Bethe ansatz,S-matrix theory,Generalized hydrodynamics,staircase model,roaming trajectories,higher-spin currents,A_n massless flows
          
        
      
        
          Data di discussione della Tesi
          26 Marzo 2021
          
        
      
      URI
      
      
     
   
  
  
  
  
  
    
    Statistica sui download
    
    
  
  
    
      Gestione del documento: 
      
        