Mazzoni, Michele
(2021)
Generalized hydrodynamics of a
(1+1)-dimensional integrable scattering
theory with roaming trajectories.
[Laurea magistrale], Università di Bologna, Corso di Studio in
Physics [LM-DM270]
Documenti full-text disponibili:
|
Documento PDF (Thesis)
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato
Download (1MB)
|
Abstract
The emergence of hydrodynamic features in off-equilibrium (1 + 1)-dimensional integrable quantum systems has been the object of increasing attention in recent years. In
this Master Thesis, we combine Thermodynamic Bethe Ansatz (TBA) techniques for
finite-temperature quantum field theories with the Generalized Hydrodynamics (GHD)
picture to provide a theoretical and numerical analysis of Zamolodchikov’s staircase
model both at thermal equilibrium and in inhomogeneous generalized Gibbs ensembles.
The staircase model is a diagonal (1 + 1)-dimensional integrable scattering theory with
the remarkable property of roaming between infinitely many critical points when moving
along a renormalization group trajectory. Namely, the finite-temperature dimensionless
ground-state energy of the system approaches the central charges of all the minimal unitary conformal field theories (CFTs) M_p as the temperature varies. Within the GHD
framework we develop a detailed study of the staircase model’s hydrodynamics and compare its quite surprising features to those displayed by a class of non-diagonal massless
models flowing between adjacent points in the M_p series. Finally, employing both TBA
and GHD techniques, we generalize to higher-spin local and quasi-local conserved charges
the results obtained by B. Doyon and D. Bernard [1] for the steady-state energy current
in off-equilibrium conformal field theories.
Abstract
The emergence of hydrodynamic features in off-equilibrium (1 + 1)-dimensional integrable quantum systems has been the object of increasing attention in recent years. In
this Master Thesis, we combine Thermodynamic Bethe Ansatz (TBA) techniques for
finite-temperature quantum field theories with the Generalized Hydrodynamics (GHD)
picture to provide a theoretical and numerical analysis of Zamolodchikov’s staircase
model both at thermal equilibrium and in inhomogeneous generalized Gibbs ensembles.
The staircase model is a diagonal (1 + 1)-dimensional integrable scattering theory with
the remarkable property of roaming between infinitely many critical points when moving
along a renormalization group trajectory. Namely, the finite-temperature dimensionless
ground-state energy of the system approaches the central charges of all the minimal unitary conformal field theories (CFTs) M_p as the temperature varies. Within the GHD
framework we develop a detailed study of the staircase model’s hydrodynamics and compare its quite surprising features to those displayed by a class of non-diagonal massless
models flowing between adjacent points in the M_p series. Finally, employing both TBA
and GHD techniques, we generalize to higher-spin local and quasi-local conserved charges
the results obtained by B. Doyon and D. Bernard [1] for the steady-state energy current
in off-equilibrium conformal field theories.
Tipologia del documento
Tesi di laurea
(Laurea magistrale)
Autore della tesi
Mazzoni, Michele
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Indirizzo
THEORETICAL PHYSICS
Ordinamento Cds
DM270
Parole chiave
integrability,quantum field theory,conformal field theory,thermodynamic Bethe ansatz,S-matrix theory,Generalized hydrodynamics,staircase model,roaming trajectories,higher-spin currents,A_n massless flows
Data di discussione della Tesi
26 Marzo 2021
URI
Altri metadati
Tipologia del documento
Tesi di laurea
(NON SPECIFICATO)
Autore della tesi
Mazzoni, Michele
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Indirizzo
THEORETICAL PHYSICS
Ordinamento Cds
DM270
Parole chiave
integrability,quantum field theory,conformal field theory,thermodynamic Bethe ansatz,S-matrix theory,Generalized hydrodynamics,staircase model,roaming trajectories,higher-spin currents,A_n massless flows
Data di discussione della Tesi
26 Marzo 2021
URI
Statistica sui download
Gestione del documento: