Fedotova, Veronika
(2021)
Constraining leptophilic dark matter with KM3NeT.
[Laurea magistrale], Università di Bologna, Corso di Studio in
Physics [LM-DM270]
Documenti full-text disponibili:
|
Documento PDF (Thesis)
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato
Download (5MB)
|
Abstract
Revealing the nature of the dark matter is among the most puzzling issues of today particle physics, astrophysics and cosmology.
Given the striking evidences for dark matter at all astrophysical scales, starting from galactic and going to cosmological scales, a widespread and well motivated assumption on the nature of the dark matter is that it is made by a new particle that extends the Standard Models of Particle Physics.
Indirect detection of dark matter, which annihilates in over-dense regions like the galactic centre, is an important probe of a possible dark matter interaction with the Standard Model particles. It could provide insights both to the underlying production mechanism of dark matter in the early Universe, on the annihilation properties at present time in galactic halos and on the underlying particle physics model.
In this master thesis project we will focus on simplified leptophilic models for dark matter. These models feature an massive boson, called for instance Z', and a Dirac dark matter candidate, that complement the Standard Model of particle physics.
We will study the annihilation of dark matter into leptons, focusing in particular on neutrino lines and box-shaped energy spectra. These tow signals are smoking gun signature to discover the dark matter properties. We will perform a numerical analysis using the dark matter software MadDM to predict the expected flux from the galactic centre, by performing scans in the model parameter space. We will implement the constrains from the Fermi-LAT telescope and the XENON1T experiment. Finally we will use the predictions of those models to assess the reach of the future KM3NeT neutrino telescope.
Abstract
Revealing the nature of the dark matter is among the most puzzling issues of today particle physics, astrophysics and cosmology.
Given the striking evidences for dark matter at all astrophysical scales, starting from galactic and going to cosmological scales, a widespread and well motivated assumption on the nature of the dark matter is that it is made by a new particle that extends the Standard Models of Particle Physics.
Indirect detection of dark matter, which annihilates in over-dense regions like the galactic centre, is an important probe of a possible dark matter interaction with the Standard Model particles. It could provide insights both to the underlying production mechanism of dark matter in the early Universe, on the annihilation properties at present time in galactic halos and on the underlying particle physics model.
In this master thesis project we will focus on simplified leptophilic models for dark matter. These models feature an massive boson, called for instance Z', and a Dirac dark matter candidate, that complement the Standard Model of particle physics.
We will study the annihilation of dark matter into leptons, focusing in particular on neutrino lines and box-shaped energy spectra. These tow signals are smoking gun signature to discover the dark matter properties. We will perform a numerical analysis using the dark matter software MadDM to predict the expected flux from the galactic centre, by performing scans in the model parameter space. We will implement the constrains from the Fermi-LAT telescope and the XENON1T experiment. Finally we will use the predictions of those models to assess the reach of the future KM3NeT neutrino telescope.
Tipologia del documento
Tesi di laurea
(Laurea magistrale)
Autore della tesi
Fedotova, Veronika
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Indirizzo
THEORETICAL PHYSICS
Ordinamento Cds
DM270
Parole chiave
dark matter,leptophilic models,KM3NeT,Indirect detection,simplified models,secluded models,maddm
Data di discussione della Tesi
26 Marzo 2021
URI
Altri metadati
Tipologia del documento
Tesi di laurea
(NON SPECIFICATO)
Autore della tesi
Fedotova, Veronika
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Indirizzo
THEORETICAL PHYSICS
Ordinamento Cds
DM270
Parole chiave
dark matter,leptophilic models,KM3NeT,Indirect detection,simplified models,secluded models,maddm
Data di discussione della Tesi
26 Marzo 2021
URI
Statistica sui download
Gestione del documento: