Tree ensemble methods for Predictive Maintenance: a case study

De Giorgi, Marcello (2021) Tree ensemble methods for Predictive Maintenance: a case study. [Laurea magistrale], Università di Bologna, Corso di Studio in Ingegneria informatica [LM-DM270]
Documenti full-text disponibili:
[img] Documento PDF (Thesis)
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato

Download (2MB)

Abstract

Nel lavoro descritto in questa tesi sono stati creati modelli per la manutenzione predittiva di macchine utensili in ambito industriale; in particolare, i modelli realizzati sono stati addestrati sfruttando degli ensemble tree methods con le finalità di: predire il verificarsi di un guasto in macchina con un anticipo tale da permettere l'organizzazione delle squadre di manutenzione; predire la necessità della sostituzione anticipata dell'utensile utilizzato dalla macchina, per mantenere alti gli standard di qualità. Dopo aver dato uno sfondo al contesto industriale in esame, la tesi illustra i processi seguiti per la creazione e l'aggregazione di un dataset, e l'introduzione di informazioni relative agli eventi in macchina. Analizzato il comportamento di alcune variabili durante la lavorazione ed effettuata una distinzione tra cicli di lavorazione validi e non validi, si procede introducendo gli ensemble tree methods e il motivo della scelta di questa classe di algoritmi. Nel dettaglio, vengono presentati due possibili candidati al problema trattato: Random Forest ed XGBoost; dopo averne descritto il funzionamento, vengono presentati i risultati ottenuti dai modelli proponendo, per stimarne l'efficacia, un funzione di costo atteso come alternativa all'accuracy score. I risultati dei modelli allenati con i due algoritmi proposti vengono infine confrontati.

Abstract
Tipologia del documento
Tesi di laurea (Laurea magistrale)
Autore della tesi
De Giorgi, Marcello
Relatore della tesi
Scuola
Corso di studio
Ordinamento Cds
DM270
Parole chiave
Predictive Maintenance,manutenzione predittiva,XGBoost,Random Forest,Industria 4.0,Machine Learning
Data di discussione della Tesi
4 Febbraio 2021
URI

Altri metadati

Statistica sui download

Gestione del documento: Visualizza il documento

^