Dynamic system model identification of inertial sensors by means of neural networks

Ciccone, Francesco (2020) Dynamic system model identification of inertial sensors by means of neural networks. [Laurea magistrale], Università di Bologna, Corso di Studio in Aerospace engineering / ingegneria aerospaziale [LM-DM270] - Forli', Documento ad accesso riservato.
Documenti full-text disponibili:
[thumbnail of Thesis] Documento PDF (Thesis)
Full-text non accessibile fino al 8 Ottobre 2025.
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato

Download (8MB) | Contatta l'autore

Abstract

The thesis presents the design of a feedforward neural network for the model identification of a dynamical system of a general inertial sensor. According to the universal approximation theorem, feedforward network with a linear output layer and at least one hidden layer with any activation function can approximate any measurable function with any desired non-zero amount of error provided that the network is given enough hidden units. This theorem simply states that no matter what function we are trying to learn there is always a neural network which will be able to represent the function. So, strong of this result, the work consisted to simulate a black box approach in which the data of input and output of the dynamical system have been used first to train the neural network to predict the future behaviour of the system itself, and then to validate the model.

Abstract
Tipologia del documento
Tesi di laurea (Laurea magistrale)
Autore della tesi
Ciccone, Francesco
Relatore della tesi
Scuola
Corso di studio
Ordinamento Cds
DM270
Parole chiave
Feedforward neural network, identification, dynamic system, inertial sensor
Data di discussione della Tesi
8 Ottobre 2020
URI

Altri metadati

Gestione del documento: Visualizza il documento

^