Nanni, Giacomo
(2020)
Varietà di Segre e di Veronese.
[Laurea], Università di Bologna, Corso di Studio in Matematica [L-DM270]
Documenti full-text disponibili:
Documento PDF (Thesis)
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato Download (325kB) |
Abstract
L'obbiettivo della tesi è presentare due esempi classici di varietà proiettive: le varietà di Segre e di Veronese. Inizialmente si presentano alcuni risultati generali sugli insiemi algebrici affini e proiettivi, sugli anelli graduati e gli ideali omogenei, sulla corrispondenza tra insiemi algebrici proiettivi e ideali omogenei radicali e si costruisce la topologia di Zariski di Pn. Si costruiscono poi le varietà di Segre e le varietà di Veronese e si conclude con alcune considerazioni sulla cubica gobba.
Abstract