Random matrix theory and renormalization group: spectral theory for network ensembles

Catanzaro, Alessio (2020) Random matrix theory and renormalization group: spectral theory for network ensembles. [Laurea magistrale], Università di Bologna, Corso di Studio in Fisica [LM-DM270]
Documenti full-text disponibili:
[thumbnail of Thesis] Documento PDF (Thesis)
Disponibile con Licenza: Creative Commons: Attribuzione - Non commerciale - Condividi allo stesso modo 3.0 (CC BY-NC-SA 3.0)

Download (1MB)

Abstract

In this thesis we tackle the issue of spectral properties of networks introduced by Complex Systems Physics. Graph theory has developed methods to study the spectral properties of adjacency or stochastic matrices associated to networks based on algebraic techniques, whereas the applications to Complex Systems Theory have been essentially based on the methods of Statistical Mechanics. We use an approach to the problem using the results of the RMT in connection with some statistical mechanics techniques. RMT is of use in clarifying the physical meaning of Wigner law for large, random networks, and to compute its corrections. Then, we try to build a bridge between the sound results of RMT and Renormalisation Group methods in order to investigate the spectral properties of the Scale Free and Small World class of networks. In particular, we propose a mechanism who could help understanding the behaviour of self similar network structures with low diameter.

Abstract
Tipologia del documento
Tesi di laurea (Laurea magistrale)
Autore della tesi
Catanzaro, Alessio
Relatore della tesi
Scuola
Corso di studio
Indirizzo
Curriculum A: Teorico generale
Ordinamento Cds
DM270
Parole chiave
Network science,Random matrix theory,Network spectra,Complex systems
Data di discussione della Tesi
20 Marzo 2020
URI

Altri metadati

Statistica sui download

Gestione del documento: Visualizza il documento

^