Documento PDF (Thesis)
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato Download (993kB) |
Abstract
During the lifetime of a satellite malfunctions may occur. Unexpected behaviour are monitored using sensors all over the satellite. The telemetry values are then sent to Earth and analysed seeking for anomalies. These anomalies could be detected by humans, but this is considerably expensive. To lower the costs, machine learning techniques can be applied. In this research many diferent machine learning techniques are tested and compared using satellite telemetry data provided by OHB System AG. The fact that the anomalies are collective, together with some data properties, is exploited to improve the performances of the machine learning algorithms. Since the data comes from a real spacecraft, it presents some defects. The data covers in fact a small time-lapse and does not present critical anomalies due to the spacecraft healthiness. Some steps are then taken to improve the evaluation of the algorithms.