Tecniche di deep learning per l'object detection

Kohmann, Erich (2019) Tecniche di deep learning per l'object detection. [Laurea], Università di Bologna, Corso di Studio in Informatica [L-DM270]
Documenti full-text disponibili:
[thumbnail of Thesis] Documento PDF (Thesis)
Disponibile con Licenza: Creative Commons: Attribuzione - Non commerciale - Condividi allo stesso modo 3.0 (CC BY-NC-SA 3.0)

Download (16MB)

Abstract

L’object detection è uno dei principali problemi nell’ambito della computer vision. Negli ultimi anni, con l’avvento delle reti neurali e del deep learning, sono stati fatti notevoli progressi nei metodi per affrontare questo problema. Questa tesi intende fornire una rassegna dei principali modelli di object detection basati su deep learning, di cui si illustrano le caratteristiche fondamentali e gli elementi che li contraddistinguono dai modelli precedenti. Dopo un infarinatura iniziale sul deep learning e sulle reti neurali in genere, vengono presentati i modelli caratterizzati da tecniche innovative che hanno portato ad un miglioramento significativo, sia nella precisione e nell’accuratezza delle predizioni, che in termini di consumo di risorse. Nella seconda parte l’elaborato si concentra su YOLO e sui suoi sviluppi. YOLO è un modello basato su reti neurali convoluzionali, con il quale i problemi di localizzazione e classificazione degli oggetti in un’immagine sono stati trattati per la prima volta come un unico problema di regressione. Questo cambio di prospettiva apportato dagli autori di YOLO ha aperto la strada verso un nuovo approccio all’object detection, facilitando il successivo sviluppo di modelli sempre più precisi e performanti.

Abstract
Tipologia del documento
Tesi di laurea (Laurea)
Autore della tesi
Kohmann, Erich
Relatore della tesi
Scuola
Corso di studio
Ordinamento Cds
DM270
Parole chiave
object detection,deep learning,computer vision,YOLO
Data di discussione della Tesi
18 Dicembre 2019
URI

Altri metadati

Statistica sui download

Gestione del documento: Visualizza il documento

^