Tiozzo Gobetto, Francesca
 
(2019)
Finite state Markov chains and prediction of stock market trends using real data.
[Laurea], Università di Bologna, Corso di Studio in 
Matematica [L-DM270]
   
  
  
        
        
	
  
  
  
  
  
  
  
    
  
    
      Documenti full-text disponibili:
      
        
          
            ![[thumbnail of Thesis]](https://amslaurea.unibo.it/style/images/fileicons/application_pdf.png)  | 
            
              
Documento PDF (Thesis)
   Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato
 
              Download (660kB)
              
			  
			  
              
  
              
             | 
          
        
      
    
  
  
    
      Abstract
      In this thesis we discuss finite state Markov chains, which are a special class of stochastic processes. They can be represented either by a graph or by a matrix [P].
The reader is first introduced to Markov chains and is then guided in their classification.
Some relevant theorems are discussed. The results are used to explain when [P^n], the matrix obtained by taking the nth power of [P], converges as n approaches infinity. We start by studying the convergence in the case of [P] > 0 and we continue by focusing on two specific kinds of Markov chains: ergodic finite state chains and ergodic unichains. We then cover more general types of chains.
In the end we give an example of how these tools can be used in the field of finance. We develop a model that predicts fluctuations in the prices of stocks and we apply it to the FTSE-MIB Index using data from Borsa Italiana.
     
    
      Abstract
      In this thesis we discuss finite state Markov chains, which are a special class of stochastic processes. They can be represented either by a graph or by a matrix [P].
The reader is first introduced to Markov chains and is then guided in their classification.
Some relevant theorems are discussed. The results are used to explain when [P^n], the matrix obtained by taking the nth power of [P], converges as n approaches infinity. We start by studying the convergence in the case of [P] > 0 and we continue by focusing on two specific kinds of Markov chains: ergodic finite state chains and ergodic unichains. We then cover more general types of chains.
In the end we give an example of how these tools can be used in the field of finance. We develop a model that predicts fluctuations in the prices of stocks and we apply it to the FTSE-MIB Index using data from Borsa Italiana.
     
  
  
    
    
      Tipologia del documento
      Tesi di laurea
(Laurea)
      
      
      
      
        
      
        
          Autore della tesi
          Tiozzo Gobetto, Francesca
          
        
      
        
          Relatore della tesi
          
          
        
      
        
      
        
          Scuola
          
          
        
      
        
          Corso di studio
          
          
        
      
        
      
        
      
        
          Ordinamento Cds
          DM270
          
        
      
        
          Parole chiave
          finance probability Markov chains stocks
          
        
      
        
          Data di discussione della Tesi
          25 Ottobre 2019
          
        
      
      URI
      
      
     
   
  
    Altri metadati
    
      Tipologia del documento
      Tesi di laurea
(NON SPECIFICATO)
      
      
      
      
        
      
        
          Autore della tesi
          Tiozzo Gobetto, Francesca
          
        
      
        
          Relatore della tesi
          
          
        
      
        
      
        
          Scuola
          
          
        
      
        
          Corso di studio
          
          
        
      
        
      
        
      
        
          Ordinamento Cds
          DM270
          
        
      
        
          Parole chiave
          finance probability Markov chains stocks
          
        
      
        
          Data di discussione della Tesi
          25 Ottobre 2019
          
        
      
      URI
      
      
     
   
  
  
  
  
  
    
    Statistica sui download
    
    
  
  
    
      Gestione del documento: