Control-based Design and Analysis of Gradient-Tracking Algorithms for Distributed Quadratic Optimization

Carnevale, Guido (2019) Control-based Design and Analysis of Gradient-Tracking Algorithms for Distributed Quadratic Optimization. [Laurea magistrale], Università di Bologna, Corso di Studio in Automation engineering / ingegneria dell’automazione [LM-DM270], Documento full-text non disponibile
Il full-text non è disponibile per scelta dell'autore. (Contatta l'autore)

Abstract

In this work we design an iterative distributed optimization algorithm, based on the well-known distributed gradient tracking algorithm. We show the advantages of a system theoretical approach on a distributed optimization framework in which the cost function is given by a sum of quadratic functions. In other words, the main idea of the work consists in seeing the update equation characterizing an iterative optimization algorithm as the dynamics equation of a discrete-time system in which the decision variable plays the state variable role. The goal of the work is to show how system and control theory tools can be used to force this state variable to the optimum of the considered cost function even in presence of disturbances and/or uncertainties. So, the design of a distributed optimization algorithm is seen as the design of a controller able to solve the set point control problem in which the reference signal is given by the optimum of the considered cost function.

Abstract
Tipologia del documento
Tesi di laurea (Laurea magistrale)
Autore della tesi
Carnevale, Guido
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Ordinamento Cds
DM270
Parole chiave
Distributed optimization,System theoretical approach,Linear matrix inequalities,Input to state stability
Data di discussione della Tesi
3 Ottobre 2019
URI

Altri metadati

Gestione del documento: Visualizza il documento

^