Evandri, Chiara
(2019)
Modelli variazionali convessi-nonconvessi per la ricostruzione di segnali bilivello corrotti da sfocamento e rumore: analisi e soluzione
numerica.
[Laurea magistrale], Università di Bologna, Corso di Studio in
Matematica [LM-DM270], Documento full-text non disponibile
Il full-text non è disponibile per scelta dell'autore.
(
Contatta l'autore)
Abstract
In questa tesi abbiamo presentato/analizzato metodi variazionali allo stato dell’arte per la ricostruzione – ovvero, rimozione di sfocamento e rumore - di una classe specifica di segnali/immagini caratterizzati dal fatto di essere costanti a tratti e bilivello. Tali metodi ottengono la ricostruzione tramite la minimizzazione di un funzionale formato da due parti: un termine di fedeltà ai dati, la cui forma dipende dal tipo di rumore considerato, e un termine di regolarizzazione che codifica l’informazione a priori disponibile sul segnale da ricostruire (ad esempio, la sua regolarità). Per segnali costanti a tratti, è ben noto che il regolarizzatore deve avere la proprietà di promuovere la sparsità delle derivate prime del segnale. In particolare, molte proposte allo stato dell’arte sfruttano la pseudo-norma l0 o la norma l1 del gradiente, ossia la Variazione Totale (TV). La prima scelta è ottimale in linea teorica poiché promuove al meglio la sparsità, ma il funzionale è fortemente non convesso e i metodi numerici di minimizzazione possono convergere a soluzioni locali. Nel caso di TV si ha invece un problema convesso che garantisce la convergenza a minimi globali ma la qualità della soluzione è sub-ottima.
Motivati da vantaggi/svantaggi di l0 ed l1, in questa tesi si è deciso di investigare (teoricamente e sperimentalmente) l’uso di modelli variazionali di tipo Convesso-NonConvesso (CNC). Questi utilizzano particolari regolarizzatori non convessi e parametrici che consentono da un lato di sparsificare meglio di l1, dall’altro di mantenere la convessità del funzionale così da presentare un unico punto di minimo.
Tra i metodi CNC investigati, quello denominato GME-TV basato sul concetto di inviluppo di Moreau generalizzato ha prodotto ricostruzioni di qualità sempre migliore di TV e a volte, diremmo sorprendentemente, anche di l0. Questo rappresenta un risultato di particolare rilevanza scientifica nel campo della ricostruzione di segnali/immagini.
Abstract
In questa tesi abbiamo presentato/analizzato metodi variazionali allo stato dell’arte per la ricostruzione – ovvero, rimozione di sfocamento e rumore - di una classe specifica di segnali/immagini caratterizzati dal fatto di essere costanti a tratti e bilivello. Tali metodi ottengono la ricostruzione tramite la minimizzazione di un funzionale formato da due parti: un termine di fedeltà ai dati, la cui forma dipende dal tipo di rumore considerato, e un termine di regolarizzazione che codifica l’informazione a priori disponibile sul segnale da ricostruire (ad esempio, la sua regolarità). Per segnali costanti a tratti, è ben noto che il regolarizzatore deve avere la proprietà di promuovere la sparsità delle derivate prime del segnale. In particolare, molte proposte allo stato dell’arte sfruttano la pseudo-norma l0 o la norma l1 del gradiente, ossia la Variazione Totale (TV). La prima scelta è ottimale in linea teorica poiché promuove al meglio la sparsità, ma il funzionale è fortemente non convesso e i metodi numerici di minimizzazione possono convergere a soluzioni locali. Nel caso di TV si ha invece un problema convesso che garantisce la convergenza a minimi globali ma la qualità della soluzione è sub-ottima.
Motivati da vantaggi/svantaggi di l0 ed l1, in questa tesi si è deciso di investigare (teoricamente e sperimentalmente) l’uso di modelli variazionali di tipo Convesso-NonConvesso (CNC). Questi utilizzano particolari regolarizzatori non convessi e parametrici che consentono da un lato di sparsificare meglio di l1, dall’altro di mantenere la convessità del funzionale così da presentare un unico punto di minimo.
Tra i metodi CNC investigati, quello denominato GME-TV basato sul concetto di inviluppo di Moreau generalizzato ha prodotto ricostruzioni di qualità sempre migliore di TV e a volte, diremmo sorprendentemente, anche di l0. Questo rappresenta un risultato di particolare rilevanza scientifica nel campo della ricostruzione di segnali/immagini.
Tipologia del documento
Tesi di laurea
(Laurea magistrale)
Autore della tesi
Evandri, Chiara
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Indirizzo
Curriculum A: Generale e applicativo
Ordinamento Cds
DM270
Parole chiave
Ricostruzione di segnali/immagini,modelli variazionali,analisi convessa,codici a barre,funzioni costanti a tratti
Data di discussione della Tesi
27 Settembre 2019
URI
Altri metadati
Tipologia del documento
Tesi di laurea
(NON SPECIFICATO)
Autore della tesi
Evandri, Chiara
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Indirizzo
Curriculum A: Generale e applicativo
Ordinamento Cds
DM270
Parole chiave
Ricostruzione di segnali/immagini,modelli variazionali,analisi convessa,codici a barre,funzioni costanti a tratti
Data di discussione della Tesi
27 Settembre 2019
URI
Gestione del documento: