Van Der Meer, Valentina
(2019)
Characterization of faradaic and capacitive processes in organic photoelectrodes for artificial retina prosthesis.
[Laurea], Università di Bologna, Corso di Studio in
Fisica [L-DM270]
Documenti full-text disponibili:
|
Documento PDF (Thesis)
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato
Download (1MB)
|
Abstract
An increasing number of studies about artificial retinal prothesis have been carried out recently demonstrating the possibility to restore sight in partially sighted or blind patients. In all of such devices the fundamental component is an opotobioelectronic layer. When illuminated, this layer produces ionic current pulses of enough intensity to activate the visual cortex’s neurons. The principal objective to achieve is the deep understanding of the processes that occur at the semiconductor-liquid interface, with the purpose to develop materials that present flexibility and biocompatibility and are not subject to deterioration when in contact with an acqueous electrolyte. In this thesis I have analysed organic semiconducting pigments developed by the Linkoping University as active optobioelectronic layer. The purpose of the thesis is to investigate and characterize the faradaic and capacitive processes that occur at the interface when a light stimulated current pulse is generated. The results show that faradaic processes are favoured by a negative potential applied to the optobioelectronic layer, while with a positive potential the photocurrent is almost completely capacitive. The wavelength of the stimulating light pulse has instead no significant effect on the ratio between capacitive to faradaic current generation processes.
Abstract
An increasing number of studies about artificial retinal prothesis have been carried out recently demonstrating the possibility to restore sight in partially sighted or blind patients. In all of such devices the fundamental component is an opotobioelectronic layer. When illuminated, this layer produces ionic current pulses of enough intensity to activate the visual cortex’s neurons. The principal objective to achieve is the deep understanding of the processes that occur at the semiconductor-liquid interface, with the purpose to develop materials that present flexibility and biocompatibility and are not subject to deterioration when in contact with an acqueous electrolyte. In this thesis I have analysed organic semiconducting pigments developed by the Linkoping University as active optobioelectronic layer. The purpose of the thesis is to investigate and characterize the faradaic and capacitive processes that occur at the interface when a light stimulated current pulse is generated. The results show that faradaic processes are favoured by a negative potential applied to the optobioelectronic layer, while with a positive potential the photocurrent is almost completely capacitive. The wavelength of the stimulating light pulse has instead no significant effect on the ratio between capacitive to faradaic current generation processes.
Tipologia del documento
Tesi di laurea
(Laurea)
Autore della tesi
Van Der Meer, Valentina
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Ordinamento Cds
DM270
Parole chiave
Photocapacitor,photoelectrode,Artificial Retina Prosthesis,Semiconductor-Electrolyte Interfaces,Electrochemical Photocurrent
Data di discussione della Tesi
12 Luglio 2019
URI
Altri metadati
Tipologia del documento
Tesi di laurea
(NON SPECIFICATO)
Autore della tesi
Van Der Meer, Valentina
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Ordinamento Cds
DM270
Parole chiave
Photocapacitor,photoelectrode,Artificial Retina Prosthesis,Semiconductor-Electrolyte Interfaces,Electrochemical Photocurrent
Data di discussione della Tesi
12 Luglio 2019
URI
Statistica sui download
Gestione del documento: