Stochastic Lotka-Volterra models: neutral and niche theories for biosystems

Sanchioni, Stefano (2019) Stochastic Lotka-Volterra models: neutral and niche theories for biosystems. [Laurea magistrale], Università di Bologna, Corso di Studio in Fisica [LM-DM270]
Documenti full-text disponibili:
[thumbnail of Thesis] Documento PDF (Thesis)
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato

Download (5MB)

Abstract

In questo lavoro di tesi sono stati studiati modelli stocastici per ecosistemi basati su equazioni di tipo Lotka-Volterra con componenti fluttuanti. E' stato affrontato per primo il modello preda-predatore aggiungendo un rumore additivo ed è stata risolta l'equazione linearizzata attorno all'equilibrio. Con una limitazione alla crescita delle prede e rumore moltiplicativo si è proposto poi un modello più completo di cui si può calcolare la distribuzione di probabilità all'equilibrio. Nel caso deterministico si è fatto un confronto con dati raccolti sull’Isle Royale. Il secondo passo è stato quello di considerare specie in competizione, nell'ambito delle teorie di nicchia, e le fluttuazioni dovute alla scarsa numerosità in presenza di immigrazione, nell'ambito delle teorie neutrali. La master equation è stata analizzata in dettaglio per una popolazione con crescita limitata e immigrazione. Il passaggio da una distribuzione Gaussiana a quella di Pareto mostra come sia cruciale la scelta della forma della fluttuazione. La teoria di nicchia è stata sviluppata per due popolazioni a crescita limitata in competizione tra loro e con immigrazione, studiando gli equilibri, la loro stabilità e le biforcazioni nel caso deterministico. Si è anche indicato come formulare la master equation per combinare teoria neutrale e di nicchia in un unico modello, come proposto da Haegeman. Si è infine delineato il caso più generale di N specie, composte sia da prede in competizione sia da predatori, presenti nello stesso ambiente. Si è studiato in dettaglio un ecosistema costituito da due prede e un predatore senza competizione tra le prede caratterizzando completamente gli equilibri e la loro natura. Un confronto con dati empirici su microrganismi ha mostrato un ottimo accordo con le predizioni del modello, aprendo la possibilità per una sua estensione che includa la competizione tra le prede al fine di descrivere anche il comportamento caotico osservato sperimentalmente.

Abstract
Tipologia del documento
Tesi di laurea (Laurea magistrale)
Autore della tesi
Sanchioni, Stefano
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Indirizzo
Curriculum E: Fisica applicata
Ordinamento Cds
DM270
Parole chiave
Lotka-Volterra,Equazioni Socastiche,Master equation,Rumore additivo,Rumore moltiplicativo,Equazione logistica,Teoria della nicchia,Teoria neutrale
Data di discussione della Tesi
21 Marzo 2019
URI

Altri metadati

Statistica sui download

Gestione del documento: Visualizza il documento

^