Drusiani, Alberto
(2018)
Deep Learning Text Classification for Medical Diagnosis.
[Laurea], Università di Bologna, Corso di Studio in
Informatica [L-DM270]
Documenti full-text disponibili:
|
Documento PDF (Thesis)
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato
Download (1MB)
|
Abstract
The ICD coding is the international standard for the classification of diseases and related disorders, drawn up by the World Health Organization. It was introduced to simplify the exchange of medical data, to speed up statistical analyzes and to make insurance reimbursements efficient.
The manual classification of ICD-9-CM codes still requires a human effort that implies a considerable waste of resources and for this reason several methods have been presented over the years to automate the process.
In this thesis an approach is proposed for the automatic classification of medical diagnoses in ICD-9-CM codes using the Recurrent Neural Networks, in particular the LSTM module, and exploiting the word embedding. The results were satisfactory as we were able to obtain better accuracy than Support Vector Machines, the most used traditional method. Furthermore, we have shown the effectiveness of specific domain embedding models compared to general ones.
Abstract
The ICD coding is the international standard for the classification of diseases and related disorders, drawn up by the World Health Organization. It was introduced to simplify the exchange of medical data, to speed up statistical analyzes and to make insurance reimbursements efficient.
The manual classification of ICD-9-CM codes still requires a human effort that implies a considerable waste of resources and for this reason several methods have been presented over the years to automate the process.
In this thesis an approach is proposed for the automatic classification of medical diagnoses in ICD-9-CM codes using the Recurrent Neural Networks, in particular the LSTM module, and exploiting the word embedding. The results were satisfactory as we were able to obtain better accuracy than Support Vector Machines, the most used traditional method. Furthermore, we have shown the effectiveness of specific domain embedding models compared to general ones.
Tipologia del documento
Tesi di laurea
(Laurea)
Autore della tesi
Drusiani, Alberto
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Ordinamento Cds
DM270
Parole chiave
Deep learning,text classification,data mining,LSTM,neural networks,ICD,ICD-9-CM,Medical diagnosis,machine learning,recurrent neural networks
Data di discussione della Tesi
19 Dicembre 2018
URI
Altri metadati
Tipologia del documento
Tesi di laurea
(NON SPECIFICATO)
Autore della tesi
Drusiani, Alberto
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Ordinamento Cds
DM270
Parole chiave
Deep learning,text classification,data mining,LSTM,neural networks,ICD,ICD-9-CM,Medical diagnosis,machine learning,recurrent neural networks
Data di discussione della Tesi
19 Dicembre 2018
URI
Statistica sui download
Gestione del documento: