Multi-sensing Data Fusion: Target tracking via particle filtering

Contro, Alessandro (2018) Multi-sensing Data Fusion: Target tracking via particle filtering. [Laurea magistrale], Università di Bologna, Corso di Studio in Ingegneria e scienze informatiche [LM-DM270] - Cesena
Documenti full-text disponibili:
[thumbnail of Thesis] Documento PDF (Thesis)
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato

Download (734kB)

Abstract

In this Master's thesis, Multi-sensing Data Fusion is firstly introduced with a focus on perception and the concepts that are the base of this work, like the mathematical tools that make it possible. Particle filters are one class of these tools that allow a computer to perform fusion of numerical information that is perceived from real environment by sensors. For this reason they are described and state of the art mathematical formulas and algorithms for particle filtering are also presented. At the core of this project, a simple piece of software has been developed in order to test these tools in practice. More specifically, a Target Tracking Simulator software is presented where a virtual trackable object can freely move in a 2-dimensional simulated environment and distributed sensor agents, dispersed in the same environment, should be able to perceive the object through a state-dependent measurement affected by additive Gaussian noise. Each sensor employs particle filtering along with communication with other neighboring sensors in order to update the perceived state of the object and track it as it moves in the environment. The combination of Java and AgentSpeak languages is used as a platform for the development of this application.

Abstract
Tipologia del documento
Tesi di laurea (Laurea magistrale)
Autore della tesi
Contro, Alessandro
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Ordinamento Cds
DM270
Parole chiave
Data Fusion,Multi Agent Systems,Particle Filtering,Jason,AgentSpeak,Target Tracking,Simulation
Data di discussione della Tesi
18 Ottobre 2018
URI

Altri metadati

Statistica sui download

Gestione del documento: Visualizza il documento

^