De Fazio, Cecilia
(2018)
Entanglement Entropy In Excited States.
[Laurea magistrale], Università di Bologna, Corso di Studio in
Fisica [LM-DM270]
Documenti full-text disponibili:
|
Documento PDF (Thesis)
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato
Download (1MB)
|
Abstract
Negli ultimi anni l’entropia di entaglement è stata ampiamente studiata nel campo dell‘integrabilità. Con l‘introduzione del modello a replica è stato possibile portare alla luce le proprietà universali dell’ entropia di entanglement di un sistema bipartito nello stato di vuoto.
In questa tesi si è investigato il problema dell’entropia di entanglement di un sistema bipartito in uno stato eccitato di singola particella. In particolare, si è considerata una teoria bosonica libera in un volume finito, in modo da sfruttare al meglio le tecniche dell‘integrabilità. Nel corso di questa analisi, è stato possibile rielaborare il modello a replica in un volume finito grazie ad un raddoppiamento della teoria bosonica che ha indotto una simmetria U(1) su ogni copia del modello. Tale tecnica, nota in letter- atura come doubling trick ha permesso di ricondurre il calcolo dell’entropia di Renyi a un’opportuna espansione in form factors dei campi U(1) implementanti tale simmetria e valutarne il contributo dominante nel limite in cui il volume è grande.
I risultati ottenuti per la Second Rènyi entropy mostrano che in tale limite, l’eccesso di entanglement dovuto allo stato eccitato rispetto a quello di vuoto è indipendente dall’energia dello stato stesso e può essere interpretato come quantità che misura l’incertezza sulla localizzazione dell’eccitazione nelle due parti di cui è composto il sistema.
Abstract
Negli ultimi anni l’entropia di entaglement è stata ampiamente studiata nel campo dell‘integrabilità. Con l‘introduzione del modello a replica è stato possibile portare alla luce le proprietà universali dell’ entropia di entanglement di un sistema bipartito nello stato di vuoto.
In questa tesi si è investigato il problema dell’entropia di entanglement di un sistema bipartito in uno stato eccitato di singola particella. In particolare, si è considerata una teoria bosonica libera in un volume finito, in modo da sfruttare al meglio le tecniche dell‘integrabilità. Nel corso di questa analisi, è stato possibile rielaborare il modello a replica in un volume finito grazie ad un raddoppiamento della teoria bosonica che ha indotto una simmetria U(1) su ogni copia del modello. Tale tecnica, nota in letter- atura come doubling trick ha permesso di ricondurre il calcolo dell’entropia di Renyi a un’opportuna espansione in form factors dei campi U(1) implementanti tale simmetria e valutarne il contributo dominante nel limite in cui il volume è grande.
I risultati ottenuti per la Second Rènyi entropy mostrano che in tale limite, l’eccesso di entanglement dovuto allo stato eccitato rispetto a quello di vuoto è indipendente dall’energia dello stato stesso e può essere interpretato come quantità che misura l’incertezza sulla localizzazione dell’eccitazione nelle due parti di cui è composto il sistema.
Tipologia del documento
Tesi di laurea
(Laurea magistrale)
Autore della tesi
De Fazio, Cecilia
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Indirizzo
Curriculum A: Teorico generale
Ordinamento Cds
DM270
Parole chiave
Entanglement,integrability,excited state,replica model
Data di discussione della Tesi
23 Marzo 2018
URI
Altri metadati
Tipologia del documento
Tesi di laurea
(NON SPECIFICATO)
Autore della tesi
De Fazio, Cecilia
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Indirizzo
Curriculum A: Teorico generale
Ordinamento Cds
DM270
Parole chiave
Entanglement,integrability,excited state,replica model
Data di discussione della Tesi
23 Marzo 2018
URI
Statistica sui download
Gestione del documento: