Farina, Sofia
(2018)
Barycentric Subspace Analysis on the Sphere and Image Manifolds.
[Laurea magistrale], Università di Bologna, Corso di Studio in
Matematica [LM-DM270]
Documenti full-text disponibili:
|
Documento PDF (Thesis)
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato
Download (2MB)
|
Abstract
In this dissertation we present a generalization of Principal Component Analysis (PCA) to Riemannian manifolds called Barycentric Subspace Analysis and show some applications. The notion of barycentric subspaces has been first introduced first by X. Pennec. Since they lead to hierarchy of properly embedded linear subspaces of increasing dimension, they define a generalization of PCA on manifolds called Barycentric Subspace Analysis (BSA). We present a detailed study of the method on the sphere since it can be considered as the finite dimensional projection of a set of probability densities that have many practical applications. We also show an application of the barycentric subspace method for the study of cardiac motion in the problem of image registration, following the work of M.M. Rohé.
Abstract
In this dissertation we present a generalization of Principal Component Analysis (PCA) to Riemannian manifolds called Barycentric Subspace Analysis and show some applications. The notion of barycentric subspaces has been first introduced first by X. Pennec. Since they lead to hierarchy of properly embedded linear subspaces of increasing dimension, they define a generalization of PCA on manifolds called Barycentric Subspace Analysis (BSA). We present a detailed study of the method on the sphere since it can be considered as the finite dimensional projection of a set of probability densities that have many practical applications. We also show an application of the barycentric subspace method for the study of cardiac motion in the problem of image registration, following the work of M.M. Rohé.
Tipologia del documento
Tesi di laurea
(Laurea magistrale)
Autore della tesi
Farina, Sofia
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Indirizzo
Curriculum A: Generale e applicativo
Ordinamento Cds
DM270
Parole chiave
barycentric subspace image registration principal component analysis sphere riemannian geometry statistical methods on manifolds
Data di discussione della Tesi
23 Marzo 2018
URI
Altri metadati
Tipologia del documento
Tesi di laurea
(NON SPECIFICATO)
Autore della tesi
Farina, Sofia
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Indirizzo
Curriculum A: Generale e applicativo
Ordinamento Cds
DM270
Parole chiave
barycentric subspace image registration principal component analysis sphere riemannian geometry statistical methods on manifolds
Data di discussione della Tesi
23 Marzo 2018
URI
Statistica sui download
Gestione del documento: