Time Series Predictions With Recurrent Neural Networks

Bonato, Tommaso (2018) Time Series Predictions With Recurrent Neural Networks. [Laurea], Università di Bologna, Corso di Studio in Ingegneria e scienze informatiche [L-DM270] - Cesena, Documento full-text non disponibile
Il full-text non è disponibile per scelta dell'autore. (Contatta l'autore)

Abstract

L'obiettivo principale di questa tesi è studiare come gli algoritmi di apprendimento automatico (machine learning in inglese) e in particolare le reti neurali LSTM (Long Short Term Memory) possano essere utilizzati per prevedere i valori futuri di una serie storica regolare come, per esempio, le funzioni seno e coseno. Una serie storica è definita come una sequenza di osservazioni s_t ordinate nel tempo. Inoltre cercheremo di applicare gli stessi principi per prevedere i valori di una serie storica prodotta utilizzando i dati di vendita di un prodotto cosmetico durante un periodo di tre anni. Prima di arrivare alla parte pratica di questa tesi è necessario introdurre alcuni concetti fondamentali che saranno necessari per sviluppare l'architettura e il codice del nostro modello. Sia nell'introduzione teorica che nella parte pratica l'attenzione sarà focalizzata sull'uso di RNN (Recurrent Neural Network o Rete Neurale Ricorrente) poiché sono le reti neurali più adatte a questo tipo di problema. Un particolare tipo di RNN, chiamato Long Short Term Memory (LSTM), sarà soggetto dello studio principale di questa tesi e verrà presentata e utilizzata anche una delle sue varianti chiamata Gated Recurrent Unit (GRU). Questa tesi, in conclusione, conferma che LSTM e GRU sono il miglior tipo di rete neurale per le previsioni di serie temporali. Nell'ultima parte analizzeremo le differenze tra l'utilizzo di una CPU e una GPU durante la fase di training della rete neurale.

Abstract
Tipologia del documento
Tesi di laurea (Laurea)
Autore della tesi
Bonato, Tommaso
Relatore della tesi
Scuola
Corso di studio
Indirizzo
Curriculum scienze e tecnologie informatiche
Ordinamento Cds
DM270
Parole chiave
machine learning,lstm,recurrent neural networks,gru,time series predictions,neural netowrks,rnn,long short term memory
Data di discussione della Tesi
22 Marzo 2018
URI

Altri metadati

Gestione del documento: Visualizza il documento

^