Corazza, Michele
(2017)
Coreference Resoultion basata su reti neurali deep.
[Laurea magistrale], Università di Bologna, Corso di Studio in
Informatica [LM-DM270]
Documenti full-text disponibili:
Abstract
L’utilizzo di reti neurali deep nell’ambito dell’elaborazione del linguaggio naturale sta conducendo negli ultimi anni a risultati significativi in task molto disparati, dalla speech recognition all’analisi semantica.
La ragione di tali innovazioni risiede nelle capacità computazionali odierne, in grado di supportare l’utilizzo di reti neurali con molti livelli nascosti, dette appunto deep, e di strumenti innovativi quali le recurrent neural network, convolutional neural network e la possibilità di costruire word embedding tramite word2vec o strumenti analoghi.
Fra i task irrisolti nell’ambito delle reti neurali, è di particolare interesse lo studio della coreference resolution. In tale task l’obiettivo è quello di risolvere le coreferenze in un testo, ovvero associare menzioni che si riferiscono ad una stessa entità. Il fenomeno in esame risulta particolarmente interessante, in
quanto comprende aspetti semantici e sintattici del linguaggio, che devono essere utilizzati per giungere a buoni risultati. Un ulteriore caratteristica della coreference è la relazione di tale fenomeno con il concetto di “contesto linguistico”. È infatti dal contesto che circonda una menzione che è possibile intuire a quale entità esso si riferisca.
Si presenta con questa tesi un solver per la coreference basato su reti neurali deep, che sfrutti reti recurrent per trattare il problema. La proposta si basa sulla supposizione che sia necessario introdurre delle componenti della rete che siano in grado di fornire una rappresentazione delle menzioni, in modo da poter utilizzare tali risultati per affrontare il problema della coreference resolution.
Abstract
L’utilizzo di reti neurali deep nell’ambito dell’elaborazione del linguaggio naturale sta conducendo negli ultimi anni a risultati significativi in task molto disparati, dalla speech recognition all’analisi semantica.
La ragione di tali innovazioni risiede nelle capacità computazionali odierne, in grado di supportare l’utilizzo di reti neurali con molti livelli nascosti, dette appunto deep, e di strumenti innovativi quali le recurrent neural network, convolutional neural network e la possibilità di costruire word embedding tramite word2vec o strumenti analoghi.
Fra i task irrisolti nell’ambito delle reti neurali, è di particolare interesse lo studio della coreference resolution. In tale task l’obiettivo è quello di risolvere le coreferenze in un testo, ovvero associare menzioni che si riferiscono ad una stessa entità. Il fenomeno in esame risulta particolarmente interessante, in
quanto comprende aspetti semantici e sintattici del linguaggio, che devono essere utilizzati per giungere a buoni risultati. Un ulteriore caratteristica della coreference è la relazione di tale fenomeno con il concetto di “contesto linguistico”. È infatti dal contesto che circonda una menzione che è possibile intuire a quale entità esso si riferisca.
Si presenta con questa tesi un solver per la coreference basato su reti neurali deep, che sfrutti reti recurrent per trattare il problema. La proposta si basa sulla supposizione che sia necessario introdurre delle componenti della rete che siano in grado di fornire una rappresentazione delle menzioni, in modo da poter utilizzare tali risultati per affrontare il problema della coreference resolution.
Tipologia del documento
Tesi di laurea
(Laurea magistrale)
Autore della tesi
Corazza, Michele
Relatore della tesi
Scuola
Corso di studio
Indirizzo
Curriculum C: Sistemi e reti
Ordinamento Cds
DM270
Parole chiave
Reti Neurali,coreference resolution,Natural Language Processing
Data di discussione della Tesi
11 Ottobre 2017
URI
Altri metadati
Tipologia del documento
Tesi di laurea
(NON SPECIFICATO)
Autore della tesi
Corazza, Michele
Relatore della tesi
Scuola
Corso di studio
Indirizzo
Curriculum C: Sistemi e reti
Ordinamento Cds
DM270
Parole chiave
Reti Neurali,coreference resolution,Natural Language Processing
Data di discussione della Tesi
11 Ottobre 2017
URI
Statistica sui download
Gestione del documento: