Cappelli, Federico
(2017)
Il problema di Dirichlet per le funzioni armoniche.
[Laurea], Università di Bologna, Corso di Studio in Matematica [L-DM270], Documento ad accesso riservato.
Documenti full-text disponibili:
Documento PDF (Thesis)
Full-text accessibile solo agli utenti istituzionali dell'Ateneo Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato Download (512kB) | Contatta l'autore |
Abstract
Questa tesi ha come argomento principale le funzioni olomorfe e le funzioni armoniche. Obbiettivo: quello di mostrare i collegamenti tra queste due classi di funzioni e le loro principali proprietà. Grande importanza verrà data al Problema di Dirichlet per il Laplaciano, e alla ricerca di una soluzione su un disco qualsiasi del piano reale. In questo modo potremo arrivare ad alcuni dei risultati più importanti sulle funzioni armoniche: formule di media, disuguaglianza di Harnack, teorema di massimo e minimo forte; che hanno un equivalente per le funzioni olomorfe.
Abstract