Documenti full-text disponibili:
|
Documento PDF
Full-text accessibile solo agli utenti istituzionali dell'Ateneo
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato
Download (7MB)
| Contatta l'autore
|
Abstract
Dopo una breve introduzione sulla realtà aumentata (definizione, storia e stato dell’arte) viene effettuata un'analisi delle librerie esistenti per l’implementazione su dispositivi mobile. Considerando compatibilità con i recenti SO, frequenza degli aggiornamenti, costi per le licenze e funzionalità offerte viene scelta la libreria Vuforia, originariamente sviluppata da Qualcomm e poi acquistata da PTC inc. Si conviene poi che le apps basate su realtà aumentata creano il contenuto “aumentato” in due maniere: o tramite riconoscimento di una specifica immagine oppure tramite localizzazione GPS. Di questi due metodi descritti, il primo risulta molto più affidabile e per questo viene sviluppata una app che crea un contenuto in 3D (aumentato) riconoscendo una immagine: funzionalità di Image Targeting. Il progetto considera le seguenti varianti: l’immagine da riconoscere, chiamata “target”, può essere in un database locale oppure cloud mentre il contenuto in 3D aumentato può essere sia statico che animato. Durante la fase di implementazione vengono fornite anche alcuni nozioni di base di Computer Graphic per il rendering del modello 3D.
La tesi si conclude con una panoramica di apps presenti sullo store che funzionano secondo questo principio di Image Targeting, i possibili utilizzi in ambito educativo/ludico ed i costi di realizzazione.
Abstract
Dopo una breve introduzione sulla realtà aumentata (definizione, storia e stato dell’arte) viene effettuata un'analisi delle librerie esistenti per l’implementazione su dispositivi mobile. Considerando compatibilità con i recenti SO, frequenza degli aggiornamenti, costi per le licenze e funzionalità offerte viene scelta la libreria Vuforia, originariamente sviluppata da Qualcomm e poi acquistata da PTC inc. Si conviene poi che le apps basate su realtà aumentata creano il contenuto “aumentato” in due maniere: o tramite riconoscimento di una specifica immagine oppure tramite localizzazione GPS. Di questi due metodi descritti, il primo risulta molto più affidabile e per questo viene sviluppata una app che crea un contenuto in 3D (aumentato) riconoscendo una immagine: funzionalità di Image Targeting. Il progetto considera le seguenti varianti: l’immagine da riconoscere, chiamata “target”, può essere in un database locale oppure cloud mentre il contenuto in 3D aumentato può essere sia statico che animato. Durante la fase di implementazione vengono fornite anche alcuni nozioni di base di Computer Graphic per il rendering del modello 3D.
La tesi si conclude con una panoramica di apps presenti sullo store che funzionano secondo questo principio di Image Targeting, i possibili utilizzi in ambito educativo/ludico ed i costi di realizzazione.
Tipologia del documento
Tesi di laurea
(Laurea)
Autore della tesi
Bartoli, Giacomo
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Indirizzo
Curriculum scienze e tecnologie informatiche
Ordinamento Cds
DM270
Parole chiave
Realtà Aumentata Augmented Reality App Vuforia Image Targeting Unity XCode iOS
Data di discussione della Tesi
17 Marzo 2016
URI
Altri metadati
Tipologia del documento
Tesi di laurea
(NON SPECIFICATO)
Autore della tesi
Bartoli, Giacomo
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Indirizzo
Curriculum scienze e tecnologie informatiche
Ordinamento Cds
DM270
Parole chiave
Realtà Aumentata Augmented Reality App Vuforia Image Targeting Unity XCode iOS
Data di discussione della Tesi
17 Marzo 2016
URI
Statistica sui download
Gestione del documento: